odpoveď:
vysvetlenie:
Ak chcete nájsť obvod kruhu, použite vzorec
Ak chcete zistiť priemer kruhu, vynásobte polomer o 2.
2 (7n-21) = 14n-42
Teraz vynásobte pí:
Obvod rovnoramenného trojuholníka je 32,7 palca. Ak je dĺžka jeho základne 9,5 palca, ako zistíte dĺžku ostatných dvoch strán?
Každá strana je 11,6 Vzhľadom k tomu, že daný trojuholník je rovnoramenný, jeho zostávajúce strany sú rovnaké. Potom môžete získať každú stranu odčítaním základne od obvodu a delením 2: strana = (obvod-základňa) / 2 = (32,7-9,5) /2=11,6
Polomer kruhu je 13 palcov a dĺžka akordu v kruhu je 10 palcov. Ako zistíte vzdialenosť od stredu kruhu k akordu?
Mám 12 "v" Zvážte diagram: Môžeme použiť Pythagoras veta na trojuholník strán h, 13 a 10/2 = 5 palcov získať: 13 ^ 2 = h ^ 2 + 5 ^ 2 preusporiadanie: h = sqrt ( 13 ^ 2-5 ^ 2) = 12 "v"
Polomer väčšej kružnice je dvakrát dlhší ako polomer menšieho kruhu. Plocha šišky je 75 pi. Nájdite polomer menšieho (vnútorného) kruhu.
Menší polomer je 5 Nech r = polomer vnútorného kruhu. Potom polomer väčšej kružnice je 2r Z referencie získame rovnicu pre oblasť prstenca: A = pi (R ^ 2-r ^ 2) Náhradník 2r pre R: A = pi ((2r) ^ 2- r ^ 2) Zjednodušenie: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Náhradník v danej oblasti: 75pi = 3pir ^ 2 Rozdeľte obe strany 3pi: 25 = r ^ 2 r = 5