Čo je štandardná forma y = (3x-5) (x + 1) (x-2)?

Čo je štandardná forma y = (3x-5) (x + 1) (x-2)?
Anonim

odpoveď:

#color (modrá) (y = 3x ^ 3-8x ^ 2-x + 10) #

vysvetlenie:

Máme nám dané faktory

#y = (3x-5) (x + 1) (x-2) #

Zameriame sa na faktory na pravej strane rovnice.

Môžeme použiť FOIL Metóda násobiť dvojčleny.

Vynásobte #COLOR (red) (F) #termíny.

Vynásobte #COLOR (red) (O) #podmienok.

Vynásobte #COLOR (red) (I) #nner.

Vynásobte #COLOR (red) (L) #astných pojmov.

Prvý faktor si ponecháme tak, ako je, ale znásobíme posledné dva faktory:

# (3x-5) (x ^ 2 - 2x + x - 2) #

#rArr (3x-5) (x ^ 2 - x - 2) #

Sieť budeme znásobovať tieto dva faktory, aby sme získali:

# 3x ^ 3-3x ^ 2-6x-5x ^ 2 + 5x + 10 #

#rArr 3x ^ 3 - 8x ^ 2 - x + 10 #

Takže máme

#color (modrá) (y = 3x ^ 3 - 8x ^ 2 - x +10) #

ktorý je požadovaný polynóm v štandardnej forme.

Dúfam, že to pomôže.