odpoveď:
vysvetlenie:
Ak majú obe strany pomer
Ak sú teda strany rovnobežníka
Obvod je
Rozdeľte obe strany podľa
Zapojte ich späť do našich dĺžok:
Trojuholník A má strany dĺžky 15, 12 a 18. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 3. Aké sú možné dĺžky ostatných dvoch strán trojuholníka B?
(3,12 / 5,18 / 5), (15 / 4,3,9 / 2), (5 / 2,2,3)> Keďže trojuholník B má 3 strany, každý z nich by mohol mať dĺžku 3 a existujú 3 rôzne možnosti. Keďže trojuholníky sú podobné, pomery zodpovedajúcich strán sú rovnaké. Pomenujte 3 strany trojuholníka B, a, b a c zodpovedajúce stranám 15, 12 a 18 v trojuholníku A. "----------------------- ----------------------------- "Ak strana a = 3 potom pomer zodpovedajúcich strán = 3/15 = 1/5 odtiaľ b = 12xx1 / 5 = 12/5 "a" c = 18xx1 / 5 = 18/5 3 strany B = (3,12 / 5,18 / 5)
Obvod rovnobežníka je 238 cm. Pomer dvoch susedných strán je 3: 4. Aké sú dĺžky štyroch strán paralelogramu?
51, 68, 54, 68 Keďže opačné strany rovnobežníka sú rovnaké, potom môžeme povedať, že strany sú v pomere 3: 4: 3: 4. Vynásobením do 238 dostaneme dĺžky 51, 68, 54, 68 (keďže je tu 14 častí, každá časť sa rovná 17)
Dĺžka dvoch rovnobežných strán lichobežníka je 10 cm a 15 cm. Dĺžky ďalších dvoch strán sú 4 cm a 6 cm. Ako zistíte oblasť a rozsah 4 uhlov lichobežníka?
Takže z obrázku vieme: h ^ 2 + x ^ 2 = 16 ................ (1) h ^ 2 + y ^ 2 = 36 .... ............ (2) a x + y = 5 ................ (3) (1) - (2) => (x + y) (xy) = -20 => yx = 4 (s použitím rovnice (3)) ..... (4) tak, y = 9/2 a x = 1/2 a tak, h = sqrt63 / 2 Z týchto parametrov možno ľahko získať oblasť a uhly lichobežníka.