odpoveď:
dĺžky každej dlhšej strany
vysvetlenie:
Pretože paralelogram má
nechať
Dĺžka každej strany rovnostranného trojuholníka sa zvýši o 5 palcov, takže obvod je teraz 60 palcov. Ako napíšete a vyriešite rovnicu, aby ste našli pôvodnú dĺžku každej strany rovnostranného trojuholníka?

Našiel som: 15 "v" Dovoľte nám nazvať pôvodné dĺžky x: Zvýšenie 5 "in" nám: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preskupení: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "v"
Obvod trojuholníka je 29 mm. Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany. Dĺžka tretej strany je o 5 viac ako dĺžka druhej strany. Ako zistíte dĺžku trojuholníka?

S_1 = 12 s_2 = 6 s_3 = 11 Obvod trojuholníka je súčtom dĺžok všetkých jeho strán. V tomto prípade sa uvádza, že obvod je 29 mm. Takže pre tento prípad: s_1 + s_2 + s_3 = 29 Takže riešenie dĺžky strán prekladáme výrazy v zadanom formulári do rovnice. "Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany" Aby sme to vyriešili, priradíme náhodnú premennú buď s_1 alebo s_2. Pre tento príklad by som nechal x byť dĺžkou druhej strany, aby som sa vyhol zlomkom v mojej rovnici. takže vieme, že: s_1 = 2s_2 ale keďže sme nechali s_2 byť
Dve protiľahlé strany rovnobežníka majú dĺžku 3 mm. Ak má jeden roh rovnobežníka uhol pi / 12 a plocha rovnobežníka je 14, ako dlho sú ostatné dve strany?

Predpokladajme trochu základnej Trigonometrie ... Nech x je (spoločná) dĺžka každej neznámej strany. Ak b = 3 je mierou základne rovnobežníka, h je jeho vertikálna výška. Plocha rovnobežníka je bh = 14 Pretože b je známe, máme h = 14/3. Zo základného Trig, sin (pi / 12) = h / x. Presnú hodnotu sínusu môžeme nájsť buď pomocou polovičného uhla alebo rozdielu. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Takže ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h Nahraďte