Dve lode sa po odchode z toho istého doku pohybujú v pravých uhloch k sebe. O 1 hodinu neskôr sú vzdialené 5 míľ. Ak človek cestuje o 1 míľu rýchlejšie ako ten druhý, aká je miera každého z nich?

Dve lode sa po odchode z toho istého doku pohybujú v pravých uhloch k sebe. O 1 hodinu neskôr sú vzdialené 5 míľ. Ak človek cestuje o 1 míľu rýchlejšie ako ten druhý, aká je miera každého z nich?
Anonim

odpoveď:

Rýchlejšia loď: 4 míle / hod; Pomalšia loď: 3 míle / hod

vysvetlenie:

Nechajte pomalšiu cestu loďou #X# míľ / h

#:. # rýchlejší čln cestuje po # (X + 1) # míľ / h

Po 1 hodine cestovala pomalšia loď #X# míle

a rýchlejšia loď cestovala # X + 1 # míle.

Hovoríme, že:

i) lode sa navzájom pohybujú v pravých uhloch a. t

ii) po 1 hodine sú lode od seba vzdialené 5 míľ

Preto môžeme použiť Pythagoras na pravouhlom trojuholníku tvorenom cestou oboch člnov a vzdialenosť medzi nimi takto:

# x ^ 2 + (x + 1) ^ 2 = 5 ^ 2 #

# x ^ 2 + x ^ 2 + 2x + 1 = 25 #

# 2x ^ 2 + 2x -24 = 0 #

# x ^ 2 + x -12 = 0 #

# (X + 4) (X-3) = 0 #

Vzhľadom na to: #x> 0 -> x = 3 #

#:.# Rýchlejšia loď cestuje na #(3+1)= 4# míle / hod; Pomalšia loď cestuje rýchlosťou 3 míle za hodinu.