Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Cos ^ 2 π / 8 + cos ^ 2 3π / 8 + Cos ^ 2 5π / 8 + cos ^ 2 7π / 8 Riešiť a odpovedať na hodnotu?
Rarrcos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((5pi) / 8) cos ^ 2 ((7pi) / 8) = 2 rarrcos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((5pi) / 8) + cos ^ 2 ((7pi) / 8) = cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 (pi- (3pi) / 8) cos ^ 2 (pi-pi / 8) = cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 (pi / 8) = 2 * [cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8)] = 2 * [cos ^ 2 (pi / 8) + sin ^ 2 (pi / 2- (3pi) / 8)] = 2 * [cos ^ 2 (pi / 8) + sin ^ 2 (pi / 8)] = 2 * 1 = 2
1.cos ^ 2 (π / 24) + cos ^ 2 ((19π) / 24) + cos ^ 2 ((31π) / 24) + cos ^ 2 ((37π) / 24) =? vyriešiť
Cos ^ 2 (π / 24) + cos ^ 2 ({19π} / 24) + cos ^ 2 ({31π} / 24) + cos ^ 2 ({37π} / 24) = 2 Zábava. Neviem, ako to urobiť, aby sme to urobili. Zdá sa, že v hre zjavne nie sú doplnkové alebo doplnkové uhly, takže možno je naším najlepším ťahom začať s dvojitým vzorcom. cos 2 theta = 2 cos ^ 2 theta - 1 cos ^ 2 theta = 1/2 (1 + cos 2 theta) cos ^ 2 (π / 24) + cos ^ 2 ({19π} / 24) + cos ^ 2 ({31π} / 24) + cos ^ 2 ({37π} / 24) = 4 (1/2) + 1/2 (cos (pi / 12) + cos ({19 pi} / 12) + cos ({ 31 pi} / 12) + cos ({37 pi} / 12)) Teraz nahradíme uhly coterminálnymi (tie, ktoré maj