odpoveď:
vysvetlenie:
Otázkou je, ktoré číslo nemá radikálne znamenie potom, čo ste to zjednodušili.
Takže … druhá odmocnina
Druhá odmocnina
Takže racionálne radikály sú:
poznámka pod čiarou
K dispozícii je 5 kariet. Na týchto kartách je napísaných 5 kladných celých čísel (môže byť odlišné alebo rovnaké), z ktorých každá je na každej karte. Súčet čísel na každom páre kariet. sú len tri rôzne súčty 57, 70, 83. Najväčšie celé číslo napísané na karte?
Ak by bolo 5 rôznych čísel napísaných na 5 kartách, celkový počet rôznych párov by bol "5C_2 = 10 a mali by sme 10 rôznych súčtov." Ale máme len tri rôzne súčty. Ak máme len tri rôzne čísla, potom môžeme získať tri tri rôzne páry, ktoré poskytujú tri rôzne súčty. Takže ich musia byť tri rôzne čísla na 5 kartách a možnosti sú (1) buď sa každé z dvoch čísel z troch opakuje raz alebo (2) jeden z týchto troch sa opakuje trikrát. Získané súčty s&
Tom napísal 3 po sebe idúce prirodzené čísla. Z týchto kocky ich odčítal trojnásobný produkt týchto čísel a vydelený aritmetickým priemerom týchto čísel. Aké číslo písal Tom?
Konečné číslo, ktoré Tom napísal, bolo farebné (červené) 9 Poznámka: veľa z toho závisí od môjho správneho pochopenia významu rôznych častí otázky. 3 po sebe idúce prirodzené čísla Predpokladám, že by to mohlo byť reprezentované množinou {(a-1), a, (a + 1)} pre niektoré a v NN tieto kocky súčtu čísel predpokladám, že by to mohlo byť reprezentované ako farba (biela) ( "XXX") (a-1) ^ 3 + a ^ 3 + (a + 1) ^ 3 farba (biela) ("XXXXX") = a ^ 3-3a ^ 2 + 3a-1 farba (biela) (") XXXXXx
Nech a je nenulové racionálne číslo a b je iracionálne číslo. Je racionálne alebo iracionálne?
Akonáhle do výpočtu vložíte akékoľvek iracionálne číslo, hodnota je iracionálna. Akonáhle do výpočtu vložíte akékoľvek iracionálne číslo, hodnota je iracionálna. Zvážte pi. pi je iracionálne. Preto 2pi, "6+ pi", "12-pi", "pi / 4", "pi ^ 2" "sqrtpi atď sú tiež iracionálne.