prvý termín
Súčet geometrických radov do
Kde
Tu
Preto suma je
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Súčet štyroch po sebe idúcich výrazov geometrickej sekvencie je 30. Ak je AM prvého a posledného výrazu 9. Nájdite spoločný pomer.
Nech je prvý termín a spoločný pomer GP a a r. 1. podmienkou a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Podľa druhej podmienky a + ar ^ 3 = 2 * 9 .... (2) Odčítanie (2) od (1) ar + ar ^ 2 = 12 .... (3) Delenie (2) pomocou (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Takže r = 2 alebo 1/2
Prvý termín geometrickej postupnosti je 200 a súčet prvých štyroch výrazov je 324,8. Ako zistíte spoločný pomer?
Súčet všetkých geometrických sekvencií je: s = a (1-r ^ n) / (1-r) s = súčet, a = počiatočný termín, r = spoločný pomer, n = termínové číslo ... a, n, tak ... 324.8 = 200 (1-r ^ 4) / (1-r) 1,624 = (1-r ^ 4) / (1-r) 1,624-1,624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1,624) dostaneme .. .5, .388, .399, .39999999, .3999999999999999 Takže limit bude 0,4 alebo 4/10. Teda váš spoločný pomer je 4/10 kontrola ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324,8