odpoveď:
vysvetlenie:
Typická geometrická sekvencia môže byť reprezentovaná ako
a typická aritmetická sekvencia ako
povolania
Riešenie pre
odpoveď:
prvých 5 výrazov lineárnej postupnosti:
vysvetlenie:
(Ignorovanie geometrickej postupnosti)
Ak je lineárna séria označená ako
a spoločný rozdiel medzi výrazmi sa označuje ako
potom
poznač si to
Daný štvrtý termín lineárnej série je 10
Daný súčet prvých 5 výrazov lineárnej sekvencie je 60
Vynásobenie 1 číslom 5
potom odčítanie 3 od 2
dosadením
Z toho vyplýva, že prvých 5 termínov je:
Súčet štyroch po sebe idúcich výrazov geometrickej sekvencie je 30. Ak je AM prvého a posledného výrazu 9. Nájdite spoločný pomer.
Nech je prvý termín a spoločný pomer GP a a r. 1. podmienkou a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Podľa druhej podmienky a + ar ^ 3 = 2 * 9 .... (2) Odčítanie (2) od (1) ar + ar ^ 2 = 12 .... (3) Delenie (2) pomocou (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Takže r = 2 alebo 1/2
Prvý termín geometrickej postupnosti je 200 a súčet prvých štyroch výrazov je 324,8. Ako zistíte spoločný pomer?
Súčet všetkých geometrických sekvencií je: s = a (1-r ^ n) / (1-r) s = súčet, a = počiatočný termín, r = spoločný pomer, n = termínové číslo ... a, n, tak ... 324.8 = 200 (1-r ^ 4) / (1-r) 1,624 = (1-r ^ 4) / (1-r) 1,624-1,624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1,624) dostaneme .. .5, .388, .399, .39999999, .3999999999999999 Takže limit bude 0,4 alebo 4/10. Teda váš spoločný pomer je 4/10 kontrola ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324,8
Prvý termín geometrickej sekvencie je 4 a násobiteľ alebo pomer je –2. Aký je súčet prvých 5 termínov sekvencie?
Prvý výraz = a_1 = 4, spoločný pomer = r = -2 a počet výrazov = n = 5 Súčet geometrických radov do n tems je daný hodnotou S_n = (a_1 (1-r ^ n)) / (1-r ) Kde S_n je súčet n n, n je počet termínov, a_1 je prvý termín, r je spoločný pomer. Tu a_1 = 4, n = 5 a r = -2 znamená S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Preto súčet je 44