s
a tak ďalej.
Každý 4 exponenty sa cyklus opakuje. Pre každý násobok 4 (nazývajme to 'n'),
takže,
Čo je skutočné číslo, celé číslo, celé číslo, racionálne číslo a iracionálne číslo?
Vysvetlenie Nižšie racionálne čísla sú v troch rôznych formách; celé čísla, zlomky a končiace alebo opakujúce sa desatinné miesta, napríklad 1/3. Iracionálne čísla sú celkom "chaotický". Nemôžu byť napísané ako zlomky, sú to nekonečné, neopakujúce sa desatinné miesta. Príkladom je hodnota π. Celé číslo možno nazvať celé číslo a je buď kladné alebo záporné číslo alebo nula. Príkladom toho je 0, 1 a -365.
Jedno číslo je 4 menej ako 3 krát druhé číslo. Ak je 3 viac ako dvakrát, prvé číslo sa zníži o dvojnásobok druhého čísla, výsledkom je 11. Použite substitučnú metódu. Aké je prvé číslo?
N_1 = 8 n_2 = 4 Jedno číslo je o 4 menšie ako -> n_1 =? - 4 3 krát "........................." -> n_1 = 3? -4 farba druhého čísla (hnedá) (".........." -> n_1 = 3n_2-4) farba (biela) (2/2) Ak 3 ďalšie "... ........................................ "->? +3 ako dvojnásobok prvé číslo "............" -> 2n_1 + 3 je znížené o "......................... .......... "-> 2n_1 + 3-? 2-krát druhé číslo "................." -> 2n_1 + 3-2n_2 výsledok je 11 farieb (hnedý) ("......
Napíšte komplexné číslo (sqrt3 + i) / (sqrt3-i) v štandardnom formulári?
Color (maroon) (=> ((sqrt3 + i) / 2) ^ 2 Racionalizáciou menovateľa dostaneme štandardný formulár (sqrt 3 + i) / (sqrt3 - i) Násobenie a delenie (sqrt3 + i) => (sqrt3 + i) ^ 2 / ((sqrt3-i) * (sqrt3 + i))>> (sqrt3 + i) ^ 2 / (3 + 1) farba (indigo) (=> (sqrt3 + i ) / 2) 2 ^