odpoveď:
vysvetlenie:
Ako vidíte, nájdete tu neurčitú formu
#if lim_ (x -> a) (f (x)) / (g (x)) = 0/0 alebo oo / oo #
Jediné, čo musíte urobiť, je nájsť deriváciu čitateľa a menovateľa samostatne a potom zapojiť hodnotu
# => lim_ (x-> a) (f '(x)) / (g' (x) #
#f (x) = lim_ (x-> 4) (2x-8) / (sqrtx-2) = 0/0 #
#f (x) = lim_ (x-> 4) (2x-8) / (x ^ (1/2) -2) #
#f '(x) = lim_ (x-> 4) (2) / (1 / 2x ^ (- 1/2)) = lim_ (x-> 4) (2) / (1 / (2sqrtx)) = (2) / (1/4) = 8 #
Dúfam, že to pomôže:)
odpoveď:
vysvetlenie:
Ako doplnok k inej odpovedi je možné tento problém vyriešiť použitím algebraickej manipulácie s výrazom.
# = Lim_ (x-> 4) 2 * ((x-4), (sqrt (x) 2)) / ((sqrt (x) -2) (sqrt (x) 2)) #
# = Lim_ (x-> 4) 2 * ((x-4), (sqrt (x) 2)) / (x-4) #
# = Lim_ (x-> 4) 2 (sqrt (x) 2) #
# = 2 (sqrt (4) 2) #
#=2(2+2)#
#=8#
Ako zistíte limit sqrt (x ^ 2-9) / (2x-6) ako x prístupy -oo?
Urobte trochu faktoringu, aby ste dostali lim_ (x -> - oo) = - 1/2. Keď sa zaoberáme hranicami v nekonečno, je vždy užitočné faktor x, alebo x ^ 2, alebo akúkoľvek moc x zjednodušiť problém. Pre tento jeden z faktorov čitateľa a x od menovateľa: lim_ (x -> - oo) (sqrt (x ^ 2-9)) / (2x-6) = (sqrt (( x ^ 2) (1-9 / (x ^ 2)))) / (x (2-6 / x)) = (sqrt (x ^ 2) sqrt (1-9 / (x ^ 2))) / (x (2-6 / x)) Tu sa začína zaujímať. Pre x> 0 je sqrt (x ^ 2) pozitívny; pre x <0 je však sqrt (x ^ 2) záporný. Z matematického hľadiska: sqrt (x ^ 2) = abs (x) pre x> 0 sqrt (x ^ 2) =
Ako zistíte limit (8x-14) / (sqrt (13x + 49x ^ 2)) ako x prístupy?
Urobte trochu faktoring a zrušenie dostať lim_ (x-> oo) (8x-14) / (sqrt (13x + 49x ^ 2)) = 8/7. V medziach nekonečna je všeobecnou stratégiou využiť skutočnosť, že lim_ (x-> oo) 1 / x = 0. Zvyčajne to znamená, že sa zrealizuje x, čo tu budeme robiť. Začni faktoringom x z čitateľa a x ^ 2 z menovateľa: (x (8-14 / x)) / (sqrt (x ^ 2 (13 / x + 49))) = (x (8 -14 / x)) / (sqrt (x ^ 2) sqrt (13 / x + 49)) Problém je teraz s sqrt (x ^ 2). Je to ekvivalent abs (x), čo je funkcia po častiach: abs (x) = {(x, "pre", x> 0), (- x, "pre", x <0):} Pretože toto je limit na kladnom nekonečno (
Ako zistíte limit (sqrt (x + 4) -2) / x ako x sa blíži 0?
1/4 Máme limit neurčitej formy, tj 0/0, takže môžeme použiť pravidlo L'Hopital: lim_ (xrarr0) (sqrt (x + 4) - 2) / x = lim_ (xrarr0) (d / (dx) ( sqrt (x + 4) -2)) / (d / (dx) (x)) = lim_ (xrarr0) (1 / (2sqrt (x + 4)) / 1 = 1 / (2sqrt (0 + 4) ) = 1/4