odpoveď:
Po sebe idúce celé čísla sú
vysvetlenie:
Celé čísla môžu byť zapísané ako
Čím väčšie sú celé čísla
Čím menšie sú celé čísla
Tieto dva výrazy môžu byť navzájom rovnaké
Produkt dvoch po sebe idúcich nepárnych celých čísel je 22 menej ako 15 násobok menšieho čísla. Aké sú celé čísla?
Dve celé čísla sú 11 a 13. Ak x predstavuje menšie celé číslo, väčšie číslo je x + 2, pretože celé čísla sú po sebe idúce a 2+ nepárne celé číslo dá ďalšie nepárne číslo. Konverzia vzťahu opísaného slovami v otázke do matematickej formy dáva: (x) (x + 2) = 15x - 22 Vyriešime x, aby sme našli menšie číslo x ^ 2 + 2x = 15x - 22 t strana} x ^ 2 -13x + 22 = 0 text {Usporiadanie do kvadratickej formy} (x-11) (x-2) = 0 text {Vyriešiť kvadratickú rovnicu} Kvadratická rovnica je vyriešená pre x = 11 alebo x
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Trojnásobok väčšieho z dvoch po sebe idúcich celých čísel dáva rovnaký výsledok ako odčítanie 10 od menšieho aj celého čísla. Aké sú celé čísla?
Našiel som -8 a -6 Zavolajte svoje celé čísla: 2n a 2n + 2 máte: 3 (2n + 2) = 2n-10 preusporiadanie: 6n + 6 = 2n-10 6n-2n = -6-10 4n = -16 n = -16 / 4 = -4 Takže celé čísla by mali byť: 2n = 2 (-4) = - 8 2n + 2 = 2 (-4) + 2 = -6