Priemerná hodnota funkcie v (x) = 4 / x2 na intervale [[1, c] sa rovná 1. Aká je hodnota c?
C = 4 Priemerná hodnota: (int_1 ^ c (4 / x ^ 2) dx) / (c-1) int_1 ^ c (4 / x ^ 2) = [-4 / x] _1 ^ c = -4 / c + 4 Takže priemerná hodnota je (-4 / c + 4) / (c-1) Riešenie (-4 / c + 4) / (c-1) = 1 nás dostane c = 4.
Nuly funkcie f (x) sú 3 a 4, zatiaľ čo nuly druhej funkcie g (x) sú 3 a 7. Aké sú nuly funkcie y = f (x) / g (x )?
Iba nula y = f (x) / g (x) je 4. Ako nuly funkcie f (x) sú 3 a 4, tento prostriedok (x-3) a (x-4) sú faktory f (x ). Ďalej nuly druhej funkcie g (x) sú 3 a 7, čo znamená (x-3) a (x-7) faktory f (x). To znamená vo funkcii y = f (x) / g (x), hoci (x-3) by malo zrušiť menovateľ g (x) = 0 nie je definovaný, keď x = 3. Nie je tiež definované, keď x = 7. Preto máme otvor v x = 3. a iba nula y = f (x) / g (x) je 4.
Nech f (x) = x-1. 1) Skontrolujte, či f (x) nie je ani párne ani nepárne. 2) Môže byť f (x) zapísané ako súčet párnej funkcie a nepárnej funkcie? a) Ak áno, vystavte roztok. Existuje viac riešení? b) Ak nie, preukázať, že to nie je možné.
Nech f (x) = | x -1 | Ak by f bolo párne, potom f (-x) by sa rovnalo f (x) pre všetky x. Ak f bolo nepárne, potom f (-x) by sa rovnalo -f (x) pre všetky x. Všimnite si, že pre x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Pretože 0 nie je rovné 2 alebo -2, f nie je ani párne ani nepárne. F môže byť napísané ako g (x) + h (x), kde g je párne a h je nepárne? Ak by to tak bolo, potom g (x) + h (x) = | x - 1 |. Zavolajte toto vyhlásenie 1. Nahraďte x za -x. g (-x) + h (-x) = | -x - 1 | Pretože g je párne a h je nepárne, máme: g (x) - h (x) = | -x - 1 | Zavolaj