odpoveď:
preskúmajme slovo expanzívne, aby sme na to odpovedali
vysvetlenie:
slovo expanzívny pochádza zo slova expand, týkajúceho sa zvýšenia, s tým, že fiškálna politika je nástrojom, ktorý používa finančné oddelenie na kontrolu ekonomického úsilia krajiny, politika obsahuje skupinu individuálnych politických cieľov, ktoré sú špecificky zamerané na chrániť a bojovať proti hospodárskym nedostatkom a inflácii.
To znamená, že finančné oddelenie môže zvýšiť a znížiť tak objem finančných prostriedkov vyčlenených na verejné výdavky, ako aj daňové sadzby, pričom cieľom je využiť tieto opatrenia na kontrolu kúpnej sily koncových užívateľov (spotrebiteľov).
otázkou je, aký je účel expanzívnej fiškálnej politiky, expanzívna fiškálna politika, ktorej cieľom je zvýšiť ekonomické úsilie krajiny, čo znamená, že fiškálna politika alebo ministerstvo financií chce, aby krajina kupovala viac, produkovala viac a platila menej daní čo urobí ako štátna pokladnica, zníži daňové sadzby, zvýši vládne výdavky a zvýši dotácie, ktoré výrobcovia a spotrebitelia dostanú ako stimul na zvýšenie objemu disponibilného príjmu.
vytváranie rastu ekonomického rastu, zvýšenie dopytu po pracovnej sile (zamestnanosť) v dôsledku vysokého dopytu po tovaroch a službách a mnohých sociálnych a bezpečnostných a ekonomických výhod.
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
K dispozícii je 5 kariet. Na týchto kartách je napísaných 5 kladných celých čísel (môže byť odlišné alebo rovnaké), z ktorých každá je na každej karte. Súčet čísel na každom páre kariet. sú len tri rôzne súčty 57, 70, 83. Najväčšie celé číslo napísané na karte?
Ak by bolo 5 rôznych čísel napísaných na 5 kartách, celkový počet rôznych párov by bol "5C_2 = 10 a mali by sme 10 rôznych súčtov." Ale máme len tri rôzne súčty. Ak máme len tri rôzne čísla, potom môžeme získať tri tri rôzne páry, ktoré poskytujú tri rôzne súčty. Takže ich musia byť tri rôzne čísla na 5 kartách a možnosti sú (1) buď sa každé z dvoch čísel z troch opakuje raz alebo (2) jeden z týchto troch sa opakuje trikrát. Získané súčty s&
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n