
odpoveď:
vysvetlenie:
Zaoberáme sa pravidlom kvocientu vnútri pravidla reťazca
Reťazové pravidlo pre kosínus
Teraz musíme urobiť pravidlo kvocientu
Pravidlo pre odvodenie e
pravidlo:
Odvodte hornú aj dolnú funkciu
Vložte ho do pravidla kvocientu
jednoducho
Teraz ho vráťte do derivačnej rovnice
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?

Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ako použiť definíciu limitu derivátu na nájdenie derivátu y = -4x-2?

-4 Definícia derivátu je definovaná takto: lim (h-> 0) (f (x + h) -f (x)) / h Použime vyššie uvedený vzorec na danú funkciu: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0) ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Zjednodušenie pomocou h = lim (h-> 0) (- 4) = -4
Ako zistíte deriváciu G (x) = (4-cos (x)) / (4 + cos (x))?

(8sinx) / (4 + cosx) ^ 2 Derivácia kvocientu je definovaná nasledovne: (u / v) '= (u'v-v'u) / v ^ 2 Dovoliť u = 4-cosx a v = 4 + cosx Vedieť, že farba (modrá) ((d (cosx)) / dx = -sinx) Nájdime u 'a v' u '= (4-cosx)' = 0-farba (modrá) ((- sinx )) = sinx v '= (4 + cosx)' = 0 + farba (modrá) ((- sinx)) = - sinx G '(x) = (u'v-v'u) / v ^ 2 G' (x) = (sinx (4 + cosx) - (- sinx) (4-cosx)) / (4 + cosx) ^ 2 G '(x) = (4sxx + sinxcosx + 4sinx-sinxcosx) / (4 + cosx ) ^ 2 G '(x) = (8sinx) / (4 + cosx) ^ 2