odpoveď:
vysvetlenie:
Dané: poradie
Toto je aritmetická sekvencia so spoločným rozdielom
Bežný rozdiel
Rovnica aritmetických sekvencií:
alebo môžete nájsť piaty termín pokračovaním pridávania
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Napíšte vzorec pre všeobecný termín (n-tý termín) geometrickej sekvencie. Vďaka?!
A_n = 1/2 (-1/5) ^ (n-1)> "n-tový termín geometrickej sekvencie je." a_n = ar ^ (n-1) "kde a je prvý termín a r spoločný rozdiel" "tu" a = 1/2 "a" r = a_2 / a_1 = (- 1/10) / (1/2 ) = - 1 / 10xx2 / 1 = -1 / 5 rArra_n = 1/2 (-1/5) ^ (n-1)
Prvý termín geometrickej sekvencie je 4 a násobiteľ alebo pomer je –2. Aký je súčet prvých 5 termínov sekvencie?
Prvý výraz = a_1 = 4, spoločný pomer = r = -2 a počet výrazov = n = 5 Súčet geometrických radov do n tems je daný hodnotou S_n = (a_1 (1-r ^ n)) / (1-r ) Kde S_n je súčet n n, n je počet termínov, a_1 je prvý termín, r je spoločný pomer. Tu a_1 = 4, n = 5 a r = -2 znamená S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Preto súčet je 44