odpoveď:
Existujú
vysvetlenie:
Môžeme zavolať na prvé číslo
Podmienkou je, že štvorec prvého čísla
Teraz máme dve metódy na riešenie tejto rovnice. Ešte jedna mechanika, jedna umelecká.
Mechanika má vyriešiť rovnicu druhého poriadku
Umeleckým spôsobom je písať
a pozorujeme, že chceme, aby produkt dvoch po sebe idúcich čísel bol
Napríklad si všimneme, že to môžeme napísať ako
Zdá sa, že sme našli naše po sebe idúce čísla!
potom
Existujú tri po sebe idúce celé čísla. ak súčet recipročných hodnôt druhého a tretieho čísla je (7/12), aké sú tri celé čísla?
2, 3, 4 Nech je n celé číslo. Potom sú tri po sebe idúce celé čísla: n, n + 1, n + 2 Súčet recipročných hodnôt 2. a 3.: 1 / (n + 1) + 1 / (n + 2) = 7/12 Pridanie zlomkov: (( n + 2) + (n + 1)) / ((n + 1) (n + 2)) = 7/12 Vynásobte 12: (12 ((n + 2) + (n + 1)) / ( (n + 1) (n + 2)) = 7 Vynásobte ((n + 1) (n + 2)) (12 ((n + 2) + (n + 1)) = 7 ((n + 1) ) (n + 2)) Rozšírenie: 12n + 24 + 12n + 12 = 7n ^ 2 + 21n + 14 Zber ako výrazy a zjednodušenie: 7n ^ 2-3n-22 = 0 faktor: (7n + 11) (n-2) ) = 0 => n = -11 / 7 a n = 2 Platí iba n = 2, pretože požadujeme celé
Tri po sebe idúce nepárne celé čísla sú také, že štvorec tretieho čísla je o 345 menej ako súčet štvorcov prvých dvoch. Ako zistíte celé čísla?
Existujú dve riešenia: 21, 23, 25 alebo -17, -15, -13 Ak je najmenšie číslo n, potom ostatné sú n + 2 a n + 4 Interpretácia otázky, máme: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345, ktoré sa rozširuje na: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 farieb (biela) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Odčítanie n ^ 2 + 8n + 16 od oboch koncov, nájdeme: 0 = n ^ 2-4n-357 farba (biela) (0) = n ^ 2-4n + 4 -361 farba (biela) (0) = (n-2) ^ 2-19 ^ 2 farba (biela) (0) = ((n-2) -19) ((n-2) +19) farba (biela ) (0) = (n-21) (n + 17) So: n = 21 "" alebo "" n = -17 a tri c
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n