odpoveď:
Wow - Dostanem odpoveď na svoju vlastnú otázku.
vysvetlenie:
Ukazuje sa, že tento prístup je kombináciou kombinatoriky a teórie čísel. Začneme faktoringom
Trik je tu zistiť, ako nájsť štvorce celých čísel, čo je relatívne jednoduché. Štvorce celých čísel môžu byť generované rôznymi spôsobmi z tejto faktorizácie:
Vidíme to
Rovnaké odôvodnenie platí aj pre
Teda požadovaný počet štvorcov celých čísel, ktoré sú deliteľmi
Majiteľ stereo obchodu chce inzerovať, že má na sklade veľa rôznych zvukových systémov. Obchod nesie 7 rôznych CD prehrávačov, 8 rôznych prijímačov a 10 rôznych reproduktorov. Koľko rôznych zvukových systémov môže majiteľ inzerovať?
Majiteľ môže inzerovať celkom 560 rôznych zvukových systémov! Spôsob, ako si o tom myslieť, je, že každá kombinácia vyzerá takto: 1 Reproduktor (systém), 1 Prijímač, 1 CD prehrávač Ak by sme mali len 1 možnosť pre reproduktory a CD prehrávače, ale stále máme 8 rôznych prijímačov, potom by to bolo 8 kombinácií. Ak by sme len pevné reproduktory (predstierať, že existuje len jeden systém reproduktorov k dispozícii), potom môžeme pracovať dole odtiaľ: S, R_1, C_1 S, R_1, C_2 S, R_1, C_3 ... S, R_1, C_8 S , R_2, C_1 ...
K dispozícii je 5 kariet. Na týchto kartách je napísaných 5 kladných celých čísel (môže byť odlišné alebo rovnaké), z ktorých každá je na každej karte. Súčet čísel na každom páre kariet. sú len tri rôzne súčty 57, 70, 83. Najväčšie celé číslo napísané na karte?
Ak by bolo 5 rôznych čísel napísaných na 5 kartách, celkový počet rôznych párov by bol "5C_2 = 10 a mali by sme 10 rôznych súčtov." Ale máme len tri rôzne súčty. Ak máme len tri rôzne čísla, potom môžeme získať tri tri rôzne páry, ktoré poskytujú tri rôzne súčty. Takže ich musia byť tri rôzne čísla na 5 kartách a možnosti sú (1) buď sa každé z dvoch čísel z troch opakuje raz alebo (2) jeden z týchto troch sa opakuje trikrát. Získané súčty s&
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n