odpoveď:
vysvetlenie:
Najprv prepíšte ako:
Potom ako:
Použijeme:
Dostaneme:
Ako zjednodušujete f (theta) = sin4theta-cos6theta na goniometrické funkcie jednotky theta?
Sin (theta) ^ 6-15cos (theta) ^ 2sin (theta) ^ 4-4cos (theta) sin (theta) ^ 3 + 15cos (theta) ^ 4sin (theta) ^ 2 + 4cos (theta) ^ 3sin (theta ) -cos (theta) ^ 6 Použijeme nasledujúce dve identity: sin (A + -B) = sinAcosB + -cosAsinB cos (A + -B) = cosAcosB sinAsinB sin (4theta) = 2sin (2theta) cos (2theta) = 2 (2sin (theta) cos (theta)) (cos ^ 2 (theta) -sin ^ 2 (theta)) = 4sín (theta) cos ^ 3 (theta) -4sín ^ 3 (theta) cos (theta) cos (6eta) = cos2 (3theta) -sín2 (3theta) = (cos (2theta) cos (theta) -sin (2theta) sin (theta)) ^ 2- (sin (2theta) cos (theta) + cos (2theta) sin (theta)) 2 = (cos (theta) (c
Ako môžete použiť goniometrické funkcie na zjednodušenie 12 e ^ ((19 pi) / 12 i) do neexponenciálneho komplexného čísla?
3sqrt6-3sqrt2-i (3sqrt6 + 3sqrt2) Môžeme premeniť re ^ (itheta) na komplexné číslo pomocou: r (costheta + isintheta) r = 12, theta = (19pi) / 12 12 (cos ((19pi) / 12) + isin ((19pi) / 12)) 3sqrt6-3sqrt2-i (3sqrt6 + 3sqrt2)
Produkt kladného čísla s dvoma číslicami a číslicou v mieste jeho jednotky je 189. Ak je číslica v mieste desiatich dvojnásobok čísla v mieste jednotky, aká je číslica na mieste jednotky?
3. Všimnite si, že dve číslice nie. splnenie druhej podmienky (podmienka) sú 21,42,63,84. Medzi nimi, od 63xx3 = 189, sme dospeli k záveru, že dvojciferné č. je 63 a požadovaná číslica na mieste jednotky je 3. Ak chcete problém vyriešiť metodicky, predpokladajte, že číslica desiateho miesta je x a číslo jednotky, y. To znamená, že dve číslice č. je 10x + y. "1" (st) "cond." RArr (10x + y) y = 189. "2" (nd) "cond." RArr x = 2y. Subsekcia x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21y ^ 2 = 189 rArr y ^ 2 = 189/21 = 9 rAr