odpoveď:
Vrchol je
vysvetlenie:
Máte 3 možnosti:
možnosť 1
- Vynásobte, aby ste získali obvyklú formu
# y = ax ^ 2 + bx + c # - Vyplňte štvorec, aby ste získali tvar vertexu:
# y = a (x + b) ^ 2 + c #
Možnosť č
Už máte faktory.
- Nájdite korene
#X# -intercepts.# (Y = 0) # - Čiara symetrie je na polceste medzi nimi
#X# - použitie
#X# nájsť# Y # .# (X, y) # bude vrcholom.
Možnosť 3. T
- Nájdite čiaru symetrie od
Potom postupujte ako pri možnosti 2.
Použime možnosť 2 ako nezvyčajnú.
Nájsť
Nájsť stred medzi nimi:
Nájsť
Vrchol je na
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Ružový lichobežník je rozšírený faktorom 3. Výsledný obraz je zobrazený modrou farbou. Aký je pomer obvodov oboch lichobežníkov? (Malý: veľký)
Obvod je tiež rozšírený faktorom pomeru 3 modrej k ružovej = 6: 2, ktorý pri zjednodušenom pomere 3: 1 je to pomer LENGTHS, takže všetky merania dĺžky sú v tomto pomere tiež obvodom. je v pomere 3: 1, takže obvod je tiež dilatovaný faktorom a3
Aký je celkový termín pre kovalentné, iónové a kovové väzby? (napríklad dipólové, vodíkové a londýnske disperzné väzby sa nazývajú van der waal sily) a tiež aký je rozdiel medzi kovalentnými, iónovými a kovovými väzbami a van der waalovými silami?
V skutočnosti neexistuje celkový termín pre kovalentné, iónové a kovové väzby. Interakcia dipólu, vodíkové väzby a londonské sily sú všetky popisujúce slabé sily príťažlivosti medzi jednoduchými molekulami, preto ich môžeme zoskupiť a nazvať ich buď medzimolekulovými silami, alebo niektorí z nás ich nazývajú Van der Waalsovými silami. Vlastne mám video lekciu porovnávajúcu rôzne typy intermolekulárnych síl. Ak máte záujem, skontrolujte to. Kovové väzby s