odpoveď:
Ak máte racionálnu funkciu s mierou čitateľa menšou alebo rovnou menovateľovi. …
vysvetlenie:
Vzhľadom k tomu, ako viete, že funkcia má horizontálnu asymptotu?
Existuje niekoľko situácií, ktoré spôsobujú horizontálne asymptoty. Tu je pár:
A. Keď máte racionálnu funkciu
B. Keď máte exponenciálnu funkciu
C. Niektoré z hyperbolických funkcií (časť kalkulu)
Protón pohybujúci sa rýchlosťou vo = 3,0 * 10 ^ 4 m / s sa premieta v uhle 30o nad horizontálnu rovinu. Ak elektrické pole 400 N / C pôsobí dole, ako dlho trvá návrat protónu do horizontálnej roviny?
Porovnajte prípad s pohybom strely. No v pohybe projektilu, konštantná zostupná sila pôsobí tak, že je gravitácia, tu zanedbávajúca gravitácia, táto sila je spôsobená len replúziou elektrickým poľom. Pozitívne nabité protóny sa znovu privádzajú v smere elektrického poľa smerom nadol. Takže, ak porovnáme s g, zrýchlenie smerom nadol bude F / m = (Eq) / m kde m je hmotnosť, q je náboj protónu. Teraz vieme, že celkový čas letu pre pohyb strely je daný ako (2u sin theta) / g kde u je rýchlosť p
Jednotná tyč s hmotnosťou m a dĺžkou l rotuje v horizontálnej rovine s uhlovou rýchlosťou omega okolo vertikálnej osi prechádzajúcej cez jeden koniec. Napätie v tyči vo vzdialenosti x od osi je?
Berúc do úvahy malú časť dr v tyčke vo vzdialenosti r od osi tyče. Takže hmotnosť tejto časti bude dm = m / l dr (ako sa uvádza jednotná tyč) Teraz napätie na tejto časti bude na ňu odstredivá sila, tj dT = -dm omega ^ 2r (pretože napätie je nasmerované ďaleko od centra, zatiaľ čo r sa počíta smerom do stredu, ak ho vyriešite vzhľadom na strednú silu, potom sila bude pozitívna, ale limit sa bude počítať od r do l) alebo dT = -m / l dr omega ^ 2r Takže, int_0 ^ T dT = -m / l omega ^ 2 int_l ^ xrdr (ako pri r = l, T = 0) So, T = - (momega ^ 2) / (2l) (x ^ 2-l ^
Čo veta zaručuje existenciu absolútnej maximálnej hodnoty a absolútnej minimálnej hodnoty pre f?
Vo všeobecnosti neexistuje žiadna záruka existencie absolútnej maximálnej alebo minimálnej hodnoty f. Ak f je spojitá na uzavretom intervale [a, b] (tj: na uzavretom a ohraničenom intervale), potom veta o extrémnych hodnotách zaručuje existenciu absolútnej maximálnej alebo minimálnej hodnoty f v intervale [a, b] ,