odpoveď:
vysvetlenie:
Z otázky dostaneme nasledujúce informácie:
Rovnica bodového sklonu.
Zjednodušiť.
pridať
Zjednodušiť.
Pri pridávaní zlomkov musia byť menovatelia rovnaké. Najmenšieho spoločného menovateľa (LCD) možno nájsť faktoringom menovateľov.
Primárne faktorizujte menovateľov
Vynásobte každú frakciu ekvivalentnou frakciou, ktorá bude mať za následok LCD
Zjednodušiť.
Zjednodušiť.
odpoveď:
vysvetlenie:
Použite rovnicu sklonu:
Dajte to
Nájsť spoločného menovateľa:
Spoločný menovateľ
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (8, -3), (1,0)?
7x-3y + 1 = 0 Sklon priamky spájajúcej dva body (x_1, y_1) a (x_2, y_2) je daný (y_2-y_1) / (x_2-x_1) alebo (y_1-y_2) / (x_1-x_2) ) Keďže body sú (8, -3) a (1, 0), sklon čiary, ktorá ich spája, bude daný (0 - (- 3)) / (1-8) alebo (3) / (- 7) tj -3/7. Produkt sklonu dvoch kolmých čiar je vždy -1. Preto sklon priamky kolmej na ňu bude 7/3 a teda rovnica vo forme svahu môže byť zapísaná ako y = 7 / 3x + c Keď toto prechádza bodom (0, -1), pričom tieto hodnoty zadávame vyššie v rovnici, dostaneme -1 = 7/3 * 0 + c alebo c = 1 Preto požadovaná rovnica bude y =
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na priamku, ktorá prechádza nasledujúcimi bodmi: (13,20), (16,1)?
Y = 3/19 * x-1 Sklon priamky prechádza (13,20) a (16,1) je m_1 = (1-20) / (16-13) = - 19/3 Poznáme stav Perpedikulárnosť medzi dvomi čiarami je súčinom ich sklonov rovným -1: .m_1 * m_2 = -1 alebo (-19/3) * m_2 = -1 alebo m_2 = 3/19 Takže prechádzajúca čiara (0, -1) ) je y + 1 = 3/19 * (x-0) alebo y = 3/19 * x-1 graf {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Napíšte bodovú rovnicu tvaru rovnice s daným sklonom, ktorý prechádza uvedeným bodom. A.) čiara so sklonom -4 prechádzajúca (5,4). a tiež B.) čiara so sklonom 2 prechádzajúcim (-1, -2). prosím pomôžte, toto mätúce?
Y-4 = -4 (x-5) "a" y + 2 = 2 (x + 1)> "rovnica priamky v" farbe (modrá) "tvar bodu-sklon" je. • farba (biela) (x) y-y_1 = m (x-x_1) "kde m je sklon a" (x_1, y_1) "bod na riadku" (A) "daný" m = -4 "a "(x_1, y_1) = (5,4)" nahradenie týchto hodnôt do rovnice dáva "y-4 = -4 (x-5) larrcolor (modrá)" v tvare bodu-svahu "(B)" daný "m = 2 "a" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (modrá) " vo forme bodového svahu "