odpoveď:
Použite vetu o Pythagoras
vysvetlenie:
Veta hovorí, že
V pravouhlom trojuholníku je štvorec prepony rovnaký ako súčet štvorcov ostatných dvoch strán.
V otázke je zobrazený hrubý pravouhlý trojuholník.
tak
nádej, ktorá pomohla!
Plocha lichobežníka je 56 jednotiek ². Horná dĺžka je rovnobežná so spodnou dĺžkou. Horná dĺžka je 10 jednotiek a spodná dĺžka je 6 jednotiek. Ako nájdem výšku?
Oblasť lichobežníka = 1/2 (b_1 + b_2) xxh Pomocou vzorca plochy a hodnôt uvedených v probléme ... 56 = 1/2 (10 + 6) xxh Teraz, vyriešte pre h ... h = 7 jednotiek nádej, ktorá pomohla
Základňa trojuholníka danej oblasti sa mení nepriamo ako výška. Trojuholník má základňu 18 cm a výšku 10 cm. Ako zistíte výšku trojuholníka rovnakej plochy a základne 15 cm?
Výška = 12 cm Plocha trojuholníka sa dá určiť pomocou rovnice = 1/2 * základňa * Výška Nájdite oblasť prvého trojuholníka nahradením rozmerov trojuholníka rovnicou. Areatriangle = 1/2 * 18 * 10 = 90 cm ^ 2 Výška druhého trojuholníka = x. Takže rovnica plochy pre druhý trojuholník = 1/2 * 15 * x Vzhľadom k tomu, že plochy sú rovné, 90 = 1/2 * 15 * x Times obidvoch strán o 2. 180 = 15x x = 12
Obvod trojuholníka je 29 mm. Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany. Dĺžka tretej strany je o 5 viac ako dĺžka druhej strany. Ako zistíte dĺžku trojuholníka?
S_1 = 12 s_2 = 6 s_3 = 11 Obvod trojuholníka je súčtom dĺžok všetkých jeho strán. V tomto prípade sa uvádza, že obvod je 29 mm. Takže pre tento prípad: s_1 + s_2 + s_3 = 29 Takže riešenie dĺžky strán prekladáme výrazy v zadanom formulári do rovnice. "Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany" Aby sme to vyriešili, priradíme náhodnú premennú buď s_1 alebo s_2. Pre tento príklad by som nechal x byť dĺžkou druhej strany, aby som sa vyhol zlomkom v mojej rovnici. takže vieme, že: s_1 = 2s_2 ale keďže sme nechali s_2 byť