odpoveď:
4
vysvetlenie:
rozdiel pravidla pravých štvorcov:
takže chýbajúci termín je
odpoveď:
Chýbajúca hodnota je
vysvetlenie:
pretože
Identifikáciou môžeme jasne vidieť, že chýbajúca hodnota je
0 / tu je naša odpoveď!
Druhý, šiesty a ôsmy termín aritmetického postupu sú tri po sebe idúce termíny Geometrického. Ako nájsť spoločný pomer G.P a získať výraz pre n-tý termín G.P?
Moja metóda to vyrieši! Total rewrite r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Aby bol rozdiel medzi týmito dvoma sekvenciami zrejmý, používam nasledujúci zápis: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + farba (biela) (5) d = t larr "Odčíta
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Prvé tri termíny 4 celých čísel sú v aritmetike P. a posledné tri termíny sú v Geometric.P.How nájsť tieto 4 čísla? Vzhľadom k (1. + posledný termín = 37) a (súčet dvoch celých čísel v strede je 36)
"Reqd. Celé čísla sú" 12, 16, 20, 25. Nazývame pojmy t_1, t_2, t_3 a t_4, kde t_i v ZZ, i = 1-4. Vzhľadom k tomu, že termíny t_2, t_3, t_4 tvoria GP, berieme, t_2 = a / r, t_3 = a, a, t_4 = ar, kde, ane0 .. Tiež dáme, že t_1, t_2 a, t_3 sú v AP máme 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Celkovo teda máme Seq, t_1 = (2a) / r-a, t_2 = a / r, t_3 = a, a t_4 = ar. Čo je dané, t_2 + t_3 = 36rArra / r + a = 36, tj a (1 + r) = 36r ....................... .................................... (ast_1). Ďalej t_1 + t_4 = 37, ....... "[vzhľadom]" rArr (2