odpoveď:
vysvetlenie:
Zavolajme termíny
Vzhľadom k tomu, že podmienky
Tiež, že
Takže celkom, máme Nasl.,
Podľa toho, čo je dané,
ďalej
Pomocou Quadri. Forml. vyriešiť tento štvorkolky. eqn., dostaneme,
Z nich Nasl.
Užite si matematiku!
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n