odpoveď:
riešenia sú: 8 10 12
alebo 10,12,14
alebo 12,14,16
vysvetlenie:
Nech je prvé párne číslo n. Súčet bude n + n + 2 + n + 4 = 3 n + 6 a
25 <3 n + 6 <45.
19 <3n <39
takže,
možné hodnoty n = 8,10,12
Pre štartér n = 8 je súčet 8 + 10 +12 = 30.
pre n = 10 existuje číslo 10,12,14, kde suma = 36
pre n = 12 existujú čísla 12,14,16, kde suma = 42
Sú to teda súbory troch po sebe idúcich čísel
set1
alebo
set2
alebo
SET3
Súčet troch po sebe idúcich celých čísel je o 71 menej ako najmenšie z celých čísel, ako zistíte celé čísla?
Nech najmenej troch po sebe idúcich celých čísel je x Súčet troch po sebe idúcich celých čísel bude: (x) + (x + 1) + (x + 2) = 3x + 3 Bolo povedané, že 3x + 3 = x-71 rarr 2x = -74 rarr x = -37 a tri po sebe idúce celé čísla sú -37, -36 a -35
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n
"Lena má 2 po sebe idúce celé čísla."Všimne si, že ich súčet sa rovná rozdielu medzi ich štvorcami. Lena vyberá ďalšie 2 po sebe idúce celé čísla a všimne si to isté. Preukázať algebraicky, že to platí pre všetky 2 po sebe idúcich celých čísel?
Láskavo sa obráťte na Vysvetlenie. Pripomeňme, že po sebe idúce celé čísla sa líšia o 1. Preto, ak m je jedno celé číslo, potom nasledujúce celé číslo musí byť n + 1. Súčet týchto dvoch celých čísel je n + (n + 1) = 2n + 1. Rozdiel medzi ich štvorcami je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, podľa potreby! Cítiť radosť z matematiky!