Nech najmenej tri po sebe idúce celé čísla sú
Súčet troch po sebe nasledujúcich celých čísel bude:
To nám je povedané
a tri po sebe idúce celé čísla
Súčet troch po sebe idúcich celých čísel je 53 viac ako najmenšie z celých čísel, ako zistíte celé čísla?
Celé čísla sú: 25,26,27 Ak predpokladáte, že najmenšie číslo je x, potom podmienky v úlohe vedú k rovnici: x + x + 1 + x + 2 = 53 + x 3x + 3 = 53 + x 2x = 50 x = 25 Takže dostanete čísla: 25,26,27
Tri po sebe idúce celé čísla môžu byť reprezentované n, n + 1 a n + 2. Ak súčet troch po sebe idúcich celých čísel je 57, aké sú celé čísla?
Suma je pridanie čísla, takže súčet n, n + 1 a n + 2 môže byť vyjadrený ako n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 tak naše prvé číslo je 18 (n) naša druhá je 19, (18 + 1) a naša tretia je 20, (18 + 2).
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n