odpoveď:
Pozrite si nižšie uvedený proces riešenia:
vysvetlenie:
Aby sme našli záchytky, musíme najprv nájsť rovnicu pre čiaru prechádzajúcu týmito dvoma bodmi. Ak chcete nájsť rovnicu priamky, musíme najprv nájsť sklon čiary. Sklon je možné nájsť pomocou vzorca:
Kde
Nahradenie hodnôt z bodov v probléme dáva:
Teraz môžeme použiť rovnicu pre zachytenie svahu na nájdenie rovnice pre čiaru. Forma priamky lineárnej rovnice je: t
Kde
Môžeme nahradiť sklon sme vypočítali
Teraz môžeme nahradiť hodnoty z druhého bodu
Teraz môžeme nahradiť sklon, ktorý sme vypočítali a hodnotu pre
na osi y:
Ak chcete nájsť
x-zachytiť:
Ak chcete nájsť
PERIMETER rovnoramenného trapézového ABCD je rovný 80 cm. Dĺžka čiary AB je 4-krát väčšia ako dĺžka čiary CD, čo je 2/5 dĺžky čiary BC (alebo čiary, ktoré majú rovnakú dĺžku). Aká je oblasť lichobežníka?
Plocha lichobežníka je 320 cm ^ 2. Nechajte lichobežník ako je uvedené nižšie: Ak predpokladáme, že menšia strana CD = a a väčšia strana AB = 4a a BC = a / (2/5) = (5a) / 2. Ako také BC = AD = (5a) / 2, CD = a a AB = 4a Teda obvod je (5a) / 2xx2 + a + 4a = 10a, ale obvod je 80 cm. Preto a = 8 cm. a dve rovnobežné strany zobrazené ako a a b sú 8 cm. a 32 cm. Teraz nakreslíme kolmice fc C a D do AB, ktoré tvoria dva identické pravouhlé trojuholníky, ktorých prepona je 5 / 2xx8 = 20 cm. a báza je (4xx8-8) / 2 = 12, a preto jej výška je sqrt (
Zoologická záhrada má dve vodné nádrže, ktoré unikajú. Jedna nádrž na vodu obsahuje 12 galónov vody a uniká konštantnou rýchlosťou 3 g / h. Druhý obsahuje 20 galónov vody a uniká konštantnou rýchlosťou 5 g / h. Kedy budú mať obe nádrže rovnaké množstvo?
4 hodiny. Prvá nádrž má 12g a stráca 3g / hod. Druhá nádrž má 20g a stráca 5g / hod. Ak reprezentujeme čas t, môžeme to napísať ako rovnicu: 12-3t = 20-5t Riešenie pre t 12-3t = 20-5t => 2t = 8 => t = 4: 4 hodiny. V tomto čase sa obe nádrže vyprázdnia súčasne.
Čiara QR obsahuje (2, 8) a (3, 10) Riadok ST obsahuje body (0, 6) a (-2,2). Sú čiary QR a ST rovnobežné alebo kolmé?
Linky sú rovnobežné. Na zistenie, či sú čiary QR a ST paralelné alebo kolmé, potrebujeme nájsť ich svahy. Ak sú sklony rovné, čiary sú rovnobežné a ak je súčin sklonov -1, sú kolmé. Sklon priamok spájajúcich body (x_1, y_1) a x_2, y_2) je (y_2-y_1) / (x_2-x_1). Preto je sklon QR (10-8) / (3-2) = 2/1 = 2 a sklon ST je (2-6) / (- 2-0) = (- 4) / (- 2) = 2 Keďže sú svahy rovnaké, čiary sú rovnobežné. graf {(y-2x-4) (y-2x-6) = 0 [-9,66, 10,34, -0,64, 9,36]}