odpoveď:
Rovnica priamky, ktorá prechádza bodmi
vysvetlenie:
Tu je odkaz na inú odpoveď, ktorú som napísal pre podobný problém:
Nie som si istý, akú formu rovnice chcete (ex: point-slope / standard / slope-intercept), takže budem robiť bod-sklon formulár.
Bod-sklon forma je
Vieme, že dva body na čiare sú
Prvá vec, ktorú chceme urobiť, je nájsť svah.
Ak chcete nájsť svah, robíme
Tak to vyriešime!
Teraz potrebujeme sadu súradníc od daného. Použime bod
Takže naša rovnica línie je
zjednodušený:
odpoveď:
vysvetlenie:
# "rovnica čiary v" farbe (modrá) "sklon-zachytiť formulár" # je.
# • farba (biela) (x), y = mx + b #
# "kde m je sklon a b y-záchyt" #
# "pre výpočet m použite vzorec" farba (modrá) "gradientu" #
#COLOR (červená) (bar (ul (| farba (biela), (2/2), farba (čierna) (m = (y_2-y_1) / (x_2-x 1)) farby (biela) (2/2) |))) #
# "let" (x_1, y_1) = (- 3,4) "a" (x_2, y_2) = (- 6,17) #
# Rarr = (17-4) / (- 6 - (- 3)) = 13 / (- 3) = - 13/3 #
# rArry = -13 / 3 + blarrcolor (modrá) "je čiastková rovnica" # #
# "nájsť b použiť jeden z dvoch uvedených bodov" #
# "using" (-6,17) #
# 17 = 26 + brArrb = -9 #
# rArry = -13 / 3x-9larrcolor (červená) "vo formulári na zachytenie svahu" # #
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (8, -3), (1,0)?
7x-3y + 1 = 0 Sklon priamky spájajúcej dva body (x_1, y_1) a (x_2, y_2) je daný (y_2-y_1) / (x_2-x_1) alebo (y_1-y_2) / (x_1-x_2) ) Keďže body sú (8, -3) a (1, 0), sklon čiary, ktorá ich spája, bude daný (0 - (- 3)) / (1-8) alebo (3) / (- 7) tj -3/7. Produkt sklonu dvoch kolmých čiar je vždy -1. Preto sklon priamky kolmej na ňu bude 7/3 a teda rovnica vo forme svahu môže byť zapísaná ako y = 7 / 3x + c Keď toto prechádza bodom (0, -1), pričom tieto hodnoty zadávame vyššie v rovnici, dostaneme -1 = 7/3 * 0 + c alebo c = 1 Preto požadovaná rovnica bude y =
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na priamku, ktorá prechádza nasledujúcimi bodmi: (13,20), (16,1)?
Y = 3/19 * x-1 Sklon priamky prechádza (13,20) a (16,1) je m_1 = (1-20) / (16-13) = - 19/3 Poznáme stav Perpedikulárnosť medzi dvomi čiarami je súčinom ich sklonov rovným -1: .m_1 * m_2 = -1 alebo (-19/3) * m_2 = -1 alebo m_2 = 3/19 Takže prechádzajúca čiara (0, -1) ) je y + 1 = 3/19 * (x-0) alebo y = 3/19 * x-1 graf {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (-5,11), (10,6)?
Y = 3x-1 "rovnica priamky je daná vzťahom" y = mx + c "kde m = gradient &" c = "priesečník y" "chceme, aby gradient priamky kolmej na čiaru" "prechádzanie danými bodmi" (-5,11), (10,6) budeme potrebovať "" m_1m_2 = -1 pre riadok daný m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3, takže požadovaný eqn. sa stane y = 3x + c prechádza cez "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1