odpoveď:
Pozri nižšie uvedené riešenie
vysvetlenie:
Doména je hodnota x, ktorú môže mať, čo je v tomto prípade nekonečné.
Tak to môže byť napísané ako
predpokladajme
Rozsah hodnôt y môže byť
Najprv nájdeme minimálnu hodnotu funkcie.
Všimnite si, že minimálna hodnota by bola súradnica, to znamená, že bude vo forme (x, y), ale vezmeme len hodnotu y.
Toto možno zistiť podľa vzorca
kde D je diskriminačný.
teda
graf {2x ^ 2 - 3x-1 -10, 10, -5, 5}
preto rozsah
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Nech doména f (x) je [-2,3] a rozsah [0,6]. Čo je doména a rozsah f (-x)?
Doména je interval [-3, 2]. Rozsah je interval [0, 6]. Presne ako je to nie je funkcia, pretože jej doména je len číslo -2,3, zatiaľ čo jej rozsah je interval. Ale za predpokladu, že je to len preklep a skutočná doména je interval [-2, 3], je to takto: Nech g (x) = f (-x). Pretože f vyžaduje, aby jeho nezávislá premenná brala hodnoty len v intervale [-2, 3], -x (záporné x) musí byť v rozsahu [-3, 2], čo je doména g. Pretože g získava svoju hodnotu prostredníctvom funkcie f, jej rozsah zostáva rovnaký, bez ohľadu na to, čo používame ako nez
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}