odpoveď:
Pozri nižšie.
vysvetlenie:
No, je tu očividne diera
Môžeme grafovať funkciu:
graf {xsin (1 / x) -10, 10, -5, 5}
Neexistujú žiadne iné asymptoty alebo diery.
odpoveď:
Má tiež horizontálnu asymptotu
Nemá žiadne vertikálne ani šikmé asymptoty.
vysvetlenie:
Vzhľadom na to:
#f (x) = x sin (1 / x) #
Budem používať niekoľko vlastností
-
#abs (sin t) <= 1 "" # pre všetky skutočné hodnoty. t# T # . -
#lim_ (t-> 0) sin (t) / t = 1 # -
#sin (-t) = -sin (t) "" # pre všetky hodnoty# T # .
Najskôr si všimnite, že
#f (-x) = (-x) hriech (1 / (- x)) = (-x) (- hriech (1 / x)) = x hriech (1 / x) = f (x) #
Nájdeme:
#abs (x sin (1 / x)) = abs (x) abs (sin (1 / x)) <= abs (x) #
takže:
# 0 <= lim_ (x-> 0+) abs (x sin (1 / x)) <= lim_ (x-> 0+) abs (x) = 0 #
Pretože toto je
Tiež, pretože
#lim_ (x-> 0 ^ -) x sin (1 / x) = lim_ (x-> 0 ^ +) x sin (1 / x) = 0 #
Poznač si to
Nájdeme tiež:
#lim_ (x-> oo) x sin (1 / x) = lim_ (t-> 0 ^ +) sin (t) / t = 1 #
podobne:
#lim_ (x -> - oo) x sin (1 / x) = lim_ (t-> 0 ^ -) sin (t) / t = 1 #
tak
graf {x sin (1 / x) -2,5, 2,5, -1,25, 1,25}
Aké sú asymptoty a otvory, ak existujú, f (x) = (1 + 1 / x) / (1 / x)?
Je diera v x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Toto je lineárna funkcia s gradientom 1 a y-intercept 1. Je definovaná v každom x okrem x = 0, pretože delenie podľa 0 je nedefinované.
Aké sú asymptoty a otvory, ak existujú, f (x) = 1 / cosx?
Tam budú vertikálne asymptoty na x = pi / 2 + pin, n a integer. Budú asymptoty. Kedykoľvek sa menovateľ rovná 0, vyskytujú sa vertikálne asymptoty. Položme menovateľa na 0 a vyriešime. cosx = 0 x = pi / 2, (3pi) / 2 Keďže funkcia y = 1 / cosx je periodická, budú nekonečné vertikálne asymptoty, všetky nasledujú vzor x = pi / 2 + pin, n celé číslo. Nakoniec si všimnite, že funkcia y = 1 / cosx je ekvivalentná y = secx. Dúfajme, že to pomôže!
Aké sú asymptoty a otvory, ak existujú, f (x) = 1 / (2-x)?
Asymptoty tejto funkcie sú x = 2 a y = 0. 1 / (2-x) je racionálna funkcia. To znamená, že tvar funkcie je takýto: graf {1 / x [-10, 10, -5, 5]} Teraz funkcia 1 / (2-x) sleduje rovnakú štruktúru grafu, ale s niekoľkými vylepšeniami , Graf je najprv posunutý horizontálne doprava o 2. Nasleduje odraz nad osou x, čo má za následok graf ako taký: graf {1 / (2-x) [-10, 10, -5, 5 ]} S týmto grafom v mysli, aby sme našli asymptoty, všetko, čo je potrebné, je hľadanie riadkov, ktorých sa graf nedotkne. A to sú x = 2 a y = 0.