odpoveď:
doména:
rozsah:
vysvetlenie:
Vzhľadom na to:
Obidve domény sú platné vstupy
Keďže máme dve odmocniny, doména a rozsah budú obmedzené.
Termíny pod každým radikálom musia byť
Pretože prvý výraz musí byť
doména:
Rozsah je založený na obmedzenej doméne.
nechať
nechať
nechať
rozsah:
odpoveď:
Doména je
vysvetlenie:
Čo je pod
Z tohto dôvodu
Doména je
To znamená,
Kedy
A kedy
Z tohto dôvodu
Rozsah je
graf {sqrt (x-3) -sqrt (x + 3) -1,42, 18,58, -6,36, 3,64}
odpoveď:
doména:
rozsah:
vysvetlenie:
Vzhľadom na to:
#y = sqrt (x-3) -sqrt (x + 3) #
Najskôr si všimnite, že odmocniny sú dobre definované a reálne, len ak
Takže doména funkcie je
Ak chcete nájsť rozsah, všimnite si, kedy
#y = sqrt ((farba (modrá) (3)) - 3) -sqrt ((farba (modrá) (3)) + 3) = sqrt (0) -sqrt (6) = -sqrt (6) #
Nájdeme:
#lim_ (x-> oo) (sqrt (x-3) -sqrt (x + 3)) = lim_ (x-> oo) ((sqrt (x-3) -sqrt (x + 3)) (sqrt (x-3) + sqrt (x + 3))) / (sqrt (x-3) + sqrt (x + 3)) #
#color (biela) (lim_ (x-> oo) (sqrt (x-3) -sqrt (x + 3))) = lim_ (x-> oo) ((x-3) - (x + 3)) / (sqrt (x-3) + sqrt (x + 3)) #
#color (biela) (lim_ (x-> oo) (sqrt (x-3) -sqrt (x + 3))) = lim_ (x-> oo) (-6) / (sqrt (x-3) + sqrt (x + 3)) #
#color (biela) (lim_ (x-> oo) (sqrt (x-3) -sqrt (x + 3))) = 0 #
Poznač si to
Rozsah danej funkcie teda beží od minimálnej hodnoty
To znamená, že rozsah je
graf {y = sqrt (x-3) -sqrt (x + 3) -10, 10, -5, 5}
Nech doména f (x) je [-2,3] a rozsah [0,6]. Čo je doména a rozsah f (-x)?
Doména je interval [-3, 2]. Rozsah je interval [0, 6]. Presne ako je to nie je funkcia, pretože jej doména je len číslo -2,3, zatiaľ čo jej rozsah je interval. Ale za predpokladu, že je to len preklep a skutočná doména je interval [-2, 3], je to takto: Nech g (x) = f (-x). Pretože f vyžaduje, aby jeho nezávislá premenná brala hodnoty len v intervale [-2, 3], -x (záporné x) musí byť v rozsahu [-3, 2], čo je doména g. Pretože g získava svoju hodnotu prostredníctvom funkcie f, jej rozsah zostáva rovnaký, bez ohľadu na to, čo používame ako nez
Čo je doména a rozsah 3x-2 / 5x + 1 a doména a rozsah inverzie funkcie?
Doména je celá s výnimkou -1/5, čo je rozsah inverznej. Rozsah je všetky reals okrem 3/5, ktorý je doménou inverzie. f (x) = (3x-2) / (5x + 1) je definovaná a reálne hodnoty pre všetky x okrem -1/5, takže je doména f a rozsah f ^ -1 Nastavenie y = (3x -2) / (5x + 1) a riešenie pre x výťažky 5xy + y = 3x-2, takže 5xy-3x = -y-2, a preto (5y-3) x = -y-2, takže nakoniec x = (- y-2) / (5R-3). Vidíme, že y! = 3/5. Takže rozsah f je všetky reals okrem 3/5. Toto je tiež doména f ^ -1.
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}