
postup:
1.)
Najprv prepíšeme rovnicu do formy, s ktorou sa dá ľahšie pracovať.
Vezmite si zástupcu oboch strán:
2.)
Prepísať sine:
3.)
Riešiť
4.)
5.)
6.)
Teraz by malo byť jednoduchšie vziať deriváciu. Teraz je to len otázka pravidla reťazca.
My to vieme
Takže, vezmite deriváciu vonkajšej funkcie, potom násobte derivátom
7.)
Derivát
8.)
Zjednodušenie 8. nám dáva:
9.)
Aby bolo vyhlásenie trochu krajšie, môžeme priniesť námestie
10.)
Zjednodušenie výnosov:
11.)
A je tu naša odpoveď. Pamätajte si, že problémy s derivátmi, ktoré zahŕňajú inverzné funkcie trig, sú väčšinou cvičením vo vašich znalostiach trig identity. Použite ich na rozdelenie funkcie na formu, ktorá sa dá ľahko odlíšiť.
Atletická asociácia chce sponzorovať footrace.The priemerný čas na spustenie kurzu je 58,6 min, s s.deviation 43 min.Ak asociácia udelí certifikáty najrýchlejším 20% pretekárov, čo by mal byť čas prerušenia? (normálne distribúcia)

22,39 minút
Aká je prvá derivácia a druhá derivácia 4x ^ (1/3) + 2x ^ (4/3)?

(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 x 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)"
Aký je prvý derivát a druhá derivácia x ^ 4 - 1?

F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2, aby sme našli prvú deriváciu, musíme jednoducho použiť tri pravidlá: 1. Pravidlo výkonu d / dx x ^ n = nx ^ (n-1 ) 2. Konštantné pravidlo d / dx (c) = 0 (kde c je celé číslo a nie premenná) 3. Pravidlo súčtu a rozdielu d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] prvá derivácia má za následok: 4x ^ 3-0, čo uľahčuje 4x ^ 3 nájsť druhú deriváciu, musíme odvodiť prvý derivát opätovným uplatnením mocenského pravidla, ktoré má za n