Aký je roztok nastavený na 30 / (x ^ 2-9) - 5 / (x-3) = 9 / (x + 3)?

Aký je roztok nastavený na 30 / (x ^ 2-9) - 5 / (x-3) = 9 / (x + 3)?
Anonim

odpoveď:

Našiel som žiadne skutočné riešenie!

vysvetlenie:

Môžete ho napísať ako:

# 30 / ((x + 3) (X-3)) - 5 / (x-3) = 9 / (x + 3) #

spoločným menovateľom môže byť: # (X + 3) (X-3) #; takže dostanete:

# (30-5 (x + 3)) / ((x + 3) (X-3)) = (9 (X-3)) / ((x + 3) (X-3)), #

# (30-5 (x + 3)) / zrušenie (((x + 3) (X-3))) = (9 (X-3)) / zrušenie (((x + 3) (X-3))) #

# 30-5x-15 = 9x-27 #

zbierať #X# naľavo:

# -14x = -42 #

# X = 42/14 = 3 #

VSTUPUJEME # X = 3 # do pôvodnej rovnice dostanete delenie nulou !!! Nemáme žiadne reálne riešenia.