odpoveď:
Šesť nepárnych čísel je:
#29, 31, 33, 35, 37, 39#
vysvetlenie:
Označte priemer šiestich čísel ako
# n-5, n-3, n-1, n + 1, n + 3, n + 5 #
potom:
# 204 = (n-5) + (n-3) + (n-1) + (n + 1) + (n + 3) + (n + 5) = 6n #
Rozdeľte oba konce podľa
#n = 204/6 = 34 #
Takže šesť nepárnych čísel je:
#29, 31, 33, 35, 37, 39#
Súčet štyroch po sebe idúcich nepárnych celých čísel je tri viac ako 5-násobok najmenších čísel, aké sú celé čísla?
N -> {9,11,13,15} farba (modrá) ("Budovanie rovníc") Nech je prvý nepárny výraz n n Nech súčet všetkých výrazov je s Potom termín 1-> n termín 2-> n +2 termín 3-> n + 4 termín 4-> n + 6 Potom s = 4n + 12 ............................ ..... (1) Vzhľadom na to, že s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ Srovnat (1) až (2), čím sa odstráni premenná s 4n + 12 = s = 3 + 5n Zbieranie podobn&
Súčet dvoch po sebe idúcich nepárnych celých čísel je 56, ako zistíte dve nepárne celé čísla?
Nepárne čísla sú 29 a 27 Existuje niekoľko spôsobov, ako to dosiahnuť. Ja som sa rozhodol použiť deriváciu metódy nepárneho čísla. Ide o to, že sa používa to, čo nazývam hodnota semena, ktorá musí byť konvertovaná, aby sa dosiahla požadovaná hodnota. Ak je číslo deliteľné 2, čo dáva celočíselnú odpoveď, potom máte párne číslo. Ak chcete previesť túto hodnotu na nepárne, pridajte alebo odčítajte 1 '~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ fa
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n