odpoveď:
doména
rozsah
vysvetlenie:
vstup logovacích funkcií musí byť väčší ako nula:
doména
Ako sa vstupné čísla dostanú bližšie a bližšie k 6, funkcia prejde na
rozsah
graf {log (2x -12) -10, 10, -5, 5}
Ak má funkcia f (x) doménu -2 <= x <= 8 a rozsah -4 <= y <= 6 a funkcia g (x) je definovaná vzorcom g (x) = 5f ( 2x)) potom čo sú domény a rozsah g?
Nižšie. Na nájdenie novej domény a rozsahu použite základné transformácie funkcií. 5f (x) znamená, že funkcia je vertikálne roztiahnutá faktorom päť. Preto bude nový rozsah preklenúť interval, ktorý je päťkrát väčší ako originál. V prípade f (2x) sa na funkciu aplikuje horizontálne roztiahnutie o faktor polovice. Preto sú konce domény polovičné. Et voilà!
Ako kombinujete podobné výrazy v 3 log x + log _ {4} - log x - log 6?
Použitím pravidla, že súčet logov je logom produktu (a určením preklepu) dostaneme log frac {2x ^ 2} {3}. Predpokladá sa, že študent chcel spojiť termíny v 3 log x + log 4 - log x - log 6 = log x ^ 3 + log 4 - log x - log 6 = log t 2x ^ 2} {3}
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}