odpoveď:
vysvetlenie:
Najprv zistite, čo
Všimli sme si, že pre racionálnu funkciu v podstate
Takže musíme zistiť, kedy
Takže doména je okrem realít
Doména f (x) je množina všetkých reálnych hodnôt okrem 7 a doména g (x) je množina všetkých reálnych hodnôt okrem -3. Čo je doména (g * f) (x)?
Všetky reálne čísla okrem 7 a -3, keď vynásobíte dve funkcie, čo robíme? berieme hodnotu f (x) a vynásobíme ju hodnotou g (x), kde x musí byť rovnaké. Obe funkcie však majú obmedzenia, 7 a -3, takže produkt oboch funkcií musí mať * obe obmedzenia. Zvyčajne, keď majú predchádzajúce funkcie (f (x) a g (x)) operácie s funkciami, mali by sa vždy brať ako súčasť nového obmedzenia novej funkcie alebo ich prevádzky. Môžete to zobraziť aj pomocou dvoch racionálnych funkcií s rôznymi obmedzenými hodnotami, potom i
Čo je doménou kombinovanej funkcie h (x) = f (x) - g (x), ak doména f (x) = (4,4,5] a doména g (x) je [4, 4,5 )?
Doména je D_ {f-g} = (4,4,5). Pozri vysvetlenie. (f-g) (x) možno vypočítať len pre tie x, pre ktoré sú definované ako f, tak aj g. Takže môžeme napísať, že: D_ {f-g} = D_fnnD_g Tu máme D_ {f-g} = (4,4,5] nn [4,4,5] = (4,4,5)
Ako zjednodušujete [frac {2} {9} cdrac {3} {10} - (- frac {2} {9} div frac {1} {3}) - frac { 2} {5}?
1/3 [2/9*3/10-(-2/9-:1/3)]-2/5 =[6/90-(-2/9*3/1)]-2/5 =[6/90+(2/9*3/1)]-2/5 =[6/90+6/9]-2/5 =[6/90+60/90]-2/5 =[66/90]-2/5 =66/90-36/90 =30/90 =1/3