odpoveď:
# y = (x - 42) ^ 2 + 7 #
vysvetlenie:
Vertexová forma kvadratickej funkcie je:
# y = a (x - h) ^ 2 + k # kde (h, k) sú súradnice vrcholu.
preto môže byť rovnica zapísaná ako:
# y = a (x - 42) ^ 2 + 7 # Nahradiť (37, 32) do rovnice nájsť a.
tj
# a (37 - 42) ^ 2 + 7 = 32 rArr 25a + 7 = 32 # 25a = 32 - 7 = 25 a a = 1
rovnica je preto:
Aká je rovnica paraboly, ktorá má vrchol (0, 0) a prechádza bodom (-1, -64)?
F (x) = - 64x ^ 2 Ak je vrchol na (0 | 0), f (x) = ax ^ 2 Teraz sme len sub v bode (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Aká je rovnica paraboly, ktorá má vrchol (0, 0) a prechádza bodom (-1, -4)?
Y = -4x ^ 2> "rovnica paraboly v" farbe (modrá) "vertex forma" je. • farba (biela) (x) y = a (xh) ^ 2 + k "kde" (h, k) "sú súradnice vrcholu a a" "je násobiteľ" "tu" (h, k) = (0,0) "teda" y = ax ^ 2 "nájsť náhradu" (-1, -4) "do rovnice" -4 = ay = -4x ^ 2larrcolor (modrý) "rovnica parabola" graf { -4x ^ 2 [-10, 10, -5, 5]}
Aká je rovnica paraboly, ktorá má vrchol (0, 8) a prechádza bodom (5, -4)?
Existuje nekonečný počet parabolických rovníc, ktoré spĺňajú dané požiadavky. Ak obmedzíme parabolu na vertikálnu os symetrie, potom: farba (biela) ("XXX") y = -12 / 25x ^ 2 + 8 Pre parabolu so zvislou osou symetrie, všeobecná forma parabolickej rovnica s vrcholom v bode (a, b) je: farba (biela) ("XXX") y = m (xa) ^ 2 + b Nahradenie zadaných hodnôt vrcholov (0,8) pre (a, b) dáva farbu (biela ) ("XXX") y = m (x-0) ^ 2 + 8 a ak (5, -4) je riešením tejto rovnice, potom farba (biela) ("XXX") - 4 = m ((- 5) ^ 2-0) +8 rArr m