odpoveď:
doména:
rozsah:
vysvetlenie:
graf {-2 (x + 3) ^ 2-5 -11,62, 8,38, -13,48, -3,48}
Toto je kvadratická (polynomiálna) funkcia, takže nie sú body diskontinuity, a teda doména je
Funkcia je však ohraničená, ako vidíte v grafe, takže musíme nájsť hornú hranicu.
takže,
A konečne:
doména:
rozsah:
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Funkcia f je taká, že f (x) = a ^ 2x ^ 2-ax + 3b pre x <1 / (2a) Kde a a b sú konštantné pre prípad, kde a = 1 a b = -1 Nájsť f ^ - 1 (cf a nájdeme jeho doménu I viem doménu f ^ -1 (x) = rozsah f (x) a je -13/4, ale nepoznám smer smeru nerovnosti?
Pozri nižšie. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Rozsah: Vložte do tvaru y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimálna hodnota -13/4 Vyskytuje sa pri x = 1/2 Tak rozsah je (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Pomocou kvadratického vzorca: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x)) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 S trochou premýšľania môžeme vidieť, že pre doménu máme požadovanú inverziu : f ^ (- 1) (x) = (1-sqrt (4x + 13)) /
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}