odpoveď:
vysvetlenie:
Menovateľ f (x) nemôže byť nula, pretože by to spôsobilo, že f (x) bude nedefinované. Vyrovnanie menovateľa na nulu a riešenie dáva hodnoty, ktoré x nemôže byť.
# "vyriešiť" 5x ^ 2 + 2x + 1 = 0 # Toto teda nehodnotí kontrolu
#color (blue) "diskriminant" #
# "tu" a = 5, b = 2 "a" c = 1 #
# B ^ 2-4ac = 4-20 = -16 # Pretože diskriminačný je <0, neexistujú žiadne skutočné korene, teda žiadne vertikálne asymptoty.
Horizontálne asymptoty sa vyskytujú ako
#lim_ (xto + -oo), f (x) toc "(konštanta)" # deliť termíny na čitateľa / menovateľa najvyššou silou x, to znamená
# X ^ 2 #
# F (x) = ((3 x ^ 2) / x ^ 2) / ((5 x ^ 2) / x ^ 2 + (2 x) / x ^ 2 + 1 / x ^ 2) = 3 / (5 + 2 / x + 1 / x ^ 2) # ako
# XTO + -OO, f (x) TO3 / (5 + 0 + 0) #
# rArry = 3/5 "je asymptota" # Diery sa vyskytujú vtedy, keď existuje duplicitný faktor na čitateľovi / menovateľovi. Toto nie je tento prípad, preto tu nie sú žiadne diery.
graf {(3x ^ 2) / (5x ^ 2 + 2x + 1) -10, 10, -5, 5}
Aké sú asymptoty a otvory, ak existujú, f (x) = (1 + 1 / x) / (1 / x)?
Je diera v x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Toto je lineárna funkcia s gradientom 1 a y-intercept 1. Je definovaná v každom x okrem x = 0, pretože delenie podľa 0 je nedefinované.
Aké sú asymptoty a otvory, ak existujú, f (x) = 1 / cosx?
Tam budú vertikálne asymptoty na x = pi / 2 + pin, n a integer. Budú asymptoty. Kedykoľvek sa menovateľ rovná 0, vyskytujú sa vertikálne asymptoty. Položme menovateľa na 0 a vyriešime. cosx = 0 x = pi / 2, (3pi) / 2 Keďže funkcia y = 1 / cosx je periodická, budú nekonečné vertikálne asymptoty, všetky nasledujú vzor x = pi / 2 + pin, n celé číslo. Nakoniec si všimnite, že funkcia y = 1 / cosx je ekvivalentná y = secx. Dúfajme, že to pomôže!
Aké sú asymptoty a otvory, ak existujú, f (x) = 1 / (2-x)?
Asymptoty tejto funkcie sú x = 2 a y = 0. 1 / (2-x) je racionálna funkcia. To znamená, že tvar funkcie je takýto: graf {1 / x [-10, 10, -5, 5]} Teraz funkcia 1 / (2-x) sleduje rovnakú štruktúru grafu, ale s niekoľkými vylepšeniami , Graf je najprv posunutý horizontálne doprava o 2. Nasleduje odraz nad osou x, čo má za následok graf ako taký: graf {1 / (2-x) [-10, 10, -5, 5 ]} S týmto grafom v mysli, aby sme našli asymptoty, všetko, čo je potrebné, je hľadanie riadkov, ktorých sa graf nedotkne. A to sú x = 2 a y = 0.