Nech je klobúk (ABC) ľubovoľný trojuholník, napínacia tyč (AC) až D, takže tyč (CD) bar (CB); natiahnite aj tyč (CB) do E tak, že bar (CE) bar (CA). Segmenty bar (DE) a bar (AB) sa stretávajú na F. Show the hat (DFB je rovnoramenné?
Ako je uvedené nižšie: Uvedený obrázok "V" DeltaCBD, bar (CD) ~ = bar (CB) => / _ CBD = / _ CDB "Opäť v" DeltaABC a DeltaDEC bar (CE) ~ = bar (AC) -> "podľa konštrukcie "bar (CD) ~ = bar (CB) ->" podľa konštrukcie "" A "/ _DCE =" vertikálne oproti "/ _BCA" odtiaľ "DeltaABC ~ = DeltaDCE => / _ EDC = / _ ABC" Teraz v "DeltaBDF, / _FBD = / _ ABC + / _ CBD = / _ EDC + / _ CDB = / _ EDB = / _ FDB "So" bar (FB) ~ = bar (FD) => DeltaFBD "je rovnoramenný"
Prosím, pomôžte mi s nasledujúcou otázkou: ƒ (x) = x ^ 2 + 3x + 16 Nájsť: ƒ (x + h) Ako? Ukážte všetky kroky, aby som lepšie porozumel! Prosím pomôžte!!
F (x) = x ^ 2 + x (2h + 3) + h (h + 3) +16> "nahradiť" x = x + h "do" f (x) f (farba (červená) (x + h )) = (farba (červená) (x + h)) ^ 2 + 3 (farba (červená) (x + h)) + 16 "rozdeľte faktory" = x ^ 2 + 2hx + h ^ 2 + 3x + 3h +16 "expanzia môže byť ponechaná v tejto forme alebo zjednodušená faktorizáciou" = x ^ 2 + x (2h + 3) + h (h + 3) +16
Dokážte uhlopriečky rovnobežníka na seba, tzn. Bar (AE) = bar (EC) a bar (BE) = bar (ED)?
Pozri Dôkaz vo vysvetlení. ABCD je paralelogram:. AB || DC, a AB = DE ................ (1):. m / _ABE = m / _EDC, m / _BAE = m / _ECD .......... (2). Teraz zvážte DeltaABE a DeltaCDE. Vzhľadom k (1) a (2), DeltaABE ~ = DeltaCDE. :. AE = EC, a BE = ED # Preto dôkaz.