Čo je doména a rozsah g (x) = x ^ 2 + 7x -18?

Čo je doména a rozsah g (x) = x ^ 2 + 7x -18?
Anonim

odpoveď:

Doména je všetko #x v RR #

Rozsah je #yinRR = - sto dvadsať jedna štvrtina; oo) #

vysvetlenie:

Toto je kvadratický polynóm druhého stupňa, takže jeho graf je parabola.

Jeho všeobecná forma je # Y = ax ^ 2 + bx + c # kde v tomto prípade a = 1 znamená, že ramená idú hore, b = 7, c = - 18, čo ukazuje, že graf má y-zachytenie v - 18.

Doménou sú všetky možné hodnoty x, ktoré sú povolené ako vstupy, takže v tomto prípade ide o všetky reálne čísla # RR #.

Rozsah je všetkých možných výstupných hodnôt y, ktoré sú povolené, a preto, pretože bod obratu nastáva, keď sa derivát rovná nule

# => 2x + 7 = 0 => x = -7/2 #

Zodpovedajúca hodnota y je potom #G (-7/2) = - sto dvadsať jedna štvrtina #

Preto rozsah #yinRR = - sto dvadsať jedna štvrtina; oo) #

Pre lepšiu prehľadnosť som zaradil graf pod ním.

graf {x ^ 2 + 7x-18 -65,77, 65,9, -32,85, 32,9}