odpoveď:
Dve celé čísla sú 53 a 54.
vysvetlenie:
Kľúčom k tejto otázke je "dve po sebe idúce celé čísla", pretože ak nešpecifikovali túto informáciu, nebudete schopný problém vyriešiť.
Dve po sebe idúce celé čísla môžu byť reprezentované
Hovoríme, že tieto dve celé čísla súčet 107, čo znamená algebraicky:
Teraz máme dvojstupňovú rovnicu, ktorú začneme riešiť odčítaním 1 z oboch strán a kombinovaním podobných výrazov:
Teraz rozdelíme obe strany o 2, aby sme získali:
To znamená,
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n
"Lena má 2 po sebe idúce celé čísla."Všimne si, že ich súčet sa rovná rozdielu medzi ich štvorcami. Lena vyberá ďalšie 2 po sebe idúce celé čísla a všimne si to isté. Preukázať algebraicky, že to platí pre všetky 2 po sebe idúcich celých čísel?
Láskavo sa obráťte na Vysvetlenie. Pripomeňme, že po sebe idúce celé čísla sa líšia o 1. Preto, ak m je jedno celé číslo, potom nasledujúce celé číslo musí byť n + 1. Súčet týchto dvoch celých čísel je n + (n + 1) = 2n + 1. Rozdiel medzi ich štvorcami je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, podľa potreby! Cítiť radosť z matematiky!