odpoveď:
vysvetlenie:
zvážiť sen ako hriech
nechať
tak daný integrál sa stane
substitúcia
zjednodušenejšia verzia
konštantný
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ako môžem prepísať nasledujúce dva výrazy trig s exponentom nie väčším ako 1? Ako (A) (Sin ^ 3) x (B) (cos ^ 4) x?
Sin3x = 1/4 [3sinx-sin3x] a cos ^ 4 (x) = 1/8 [3 + 4cos2x + cos4x] rarrsin3x = 3sinx-4sin ^ 3x rarr4sin ^ 3x = 3sinx-sin3x rarrsin ^ 3x = 1/4 [1] 3sinx-sin3x] Tiež cos ^ 4 (x) = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 1/4 [1 + 2cos2x + cos ^ 2 (2x) ] = 1/8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x]
Ako dokazujete, že sqrt (3) cos (x + pi / 6) - cos (x + pi / 3) = cos (x) -sqrt3sinx?
LHS = sqrt3cos (x + pi / 6) -cos (x-pi / 3) = sqrt3 [cosx * cos (pi / 6) -sinx * sin (pi / 6)] - [cosx * cos (pi / 3) -sinx * sin (pi / 3)] = sqrt3 [cosx * (sqrt3 / 2) -sinx * (1/2)] - [cosx * (1/2) -sinx * (sqrt3 / 2)] = (3cosx -sqrt3sinx) / 2- (cosx-sqrt3sinx) / 2 = (3cosx-sqrt3sinx-cosx + sqrt3sinx) / 2 = (2cosx) / 2 = cosx = RHS