odpoveď:
Dôkaz nižšie
vysvetlenie:
Rozšírenie kubických
identita:
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Môže niekto pomôcť overiť túto identitu triggery? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Je overená nižšie: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (zrušiť ((sinx + cosx) ) (sinx + cosx)) / (zrušiť ((sinx + cosx)) (sinx-cosx) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => farba (zelená) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Dokážte to: sqrt ((1-cosx) / (1 + cosx) + sqrt ((1 + cosx) / (1-cosx) = 2 / abs (sinx)?
Dôkaz nižšie s použitím konjugátov a trigonometrickej verzie Pytagorovej vety. Časť 1 sqrt ((1-cosx) / (1 + cosx)) farba (biela) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farba (biela) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farba (biela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Časť 2 Podobne sqrt ((1 + cosx) / (1-cosx) farba (biela) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Časť 3: Kombinácia výrazov sqrt ( (1-cosx) / (1 + cosx) + sqrt ((1 + cosx) / (1-cosx) farba (biela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1