odpoveď:
Skontrolujte nižšie.
vysvetlenie:
Daný bod
ak
Presnejšie povedané
ak
ak
Vytvorenie monotónnej tabuľky v každom prípade, kde môžete študovať
Nuly funkcie f (x) sú 3 a 4, zatiaľ čo nuly druhej funkcie g (x) sú 3 a 7. Aké sú nuly funkcie y = f (x) / g (x )?
Iba nula y = f (x) / g (x) je 4. Ako nuly funkcie f (x) sú 3 a 4, tento prostriedok (x-3) a (x-4) sú faktory f (x ). Ďalej nuly druhej funkcie g (x) sú 3 a 7, čo znamená (x-3) a (x-7) faktory f (x). To znamená vo funkcii y = f (x) / g (x), hoci (x-3) by malo zrušiť menovateľ g (x) = 0 nie je definovaný, keď x = 3. Nie je tiež definované, keď x = 7. Preto máme otvor v x = 3. a iba nula y = f (x) / g (x) je 4.
Nech f (x) = x-1. 1) Skontrolujte, či f (x) nie je ani párne ani nepárne. 2) Môže byť f (x) zapísané ako súčet párnej funkcie a nepárnej funkcie? a) Ak áno, vystavte roztok. Existuje viac riešení? b) Ak nie, preukázať, že to nie je možné.
Nech f (x) = | x -1 | Ak by f bolo párne, potom f (-x) by sa rovnalo f (x) pre všetky x. Ak f bolo nepárne, potom f (-x) by sa rovnalo -f (x) pre všetky x. Všimnite si, že pre x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Pretože 0 nie je rovné 2 alebo -2, f nie je ani párne ani nepárne. F môže byť napísané ako g (x) + h (x), kde g je párne a h je nepárne? Ak by to tak bolo, potom g (x) + h (x) = | x - 1 |. Zavolajte toto vyhlásenie 1. Nahraďte x za -x. g (-x) + h (-x) = | -x - 1 | Pretože g je párne a h je nepárne, máme: g (x) - h (x) = | -x - 1 | Zavolaj
Povedzme, že mám 480 dolárov na oplotenie v obdĺžnikovej záhrade. Oplotenie pre severnú a južnú stranu záhrady stojí 10 dolárov za nohu a oplotenie na východ a na západ stojí 15 dolárov za nohu. Ako nájdem rozmery najväčšej možnej záhrady?
Zavoláme dĺžku strán N a S x (nohy) a ďalšie dve zavoláme y (aj v stopách). Potom budú náklady na plot: 2 * x * $ 10 pre N + S a 2 * y * $ 15 pre E + W Potom rovnica pre celkové náklady na plot bude: 20x + 30y = 480 Oddeľujeme y: 30y = 480-20x-> y = 16-2 / 3 x Plocha: A = x * y, nahrádzajúce y v rovnici, ktorú dostaneme: A = x * (16-2 / 3 x) = 16x-2/3 x ^ 2 Aby sme našli maximum, musíme rozlišovať túto funkciu a potom nastaviť deriváciu na 0 A '= 16-2 * 2 / 3x = 16-4 / 3 x = 0 Ktoré rieši x = 12 Nahradenie v skoršej rovnici y = 16-2 / 3 x = 8