Paralelogram má jeden pár tupých uhlov.
odpoveď:
Buď dva alebo žiadne.
vysvetlenie:
Podľa definície je rovnobežník štvoruholník, ktorého protiľahlé strany sú rovnobežné.
Takže štvorec alebo obdĺžnik je tiež rovnobežník. Ale nemajú žiadne tupé uhly.
odpoveď:
vysvetlenie:
Opačné uhly v rovnobežníku sú rovnaké.
Paralelné strany tiež znamenajú, že sú 4 páry vnútorných uhlov, ktoré sú doplnkové (pridať k
Ako sa paralelogram nakloní, tupé uhly sa zväčšia a akútne uhly sa zmenšia.
Keď sú všetky uhly rovnaké, budú
Základné uhly rovnoramenného trojuholníka sú zhodné. Ak je miera každého zo základných uhlov dvojnásobkom miery tretieho uhla, ako zistíte mieru všetkých troch uhlov?
Základné uhly = (2pi) / 5, Tretí uhol = pi / 5 Nech každý základný uhol = theta Tretí uhol = theta / 2 Keďže súčet týchto troch uhlov sa musí rovnať pi2theta + theta / 2 = pi 5theta = 2pi theta = (2pi) / 5:. Tretí uhol = (2pi) / 5/2 = pi / 5 Teda: Základné uhly = (2pi) / 5, Tretí uhol = pi / 5
Merania dvoch uhlov majú súčet 90 stupňov. Merania uhlov sú v pomere 2: 1, ako určujete miery oboch uhlov?
Menší uhol je 30 stupňov a druhý uhol je dvakrát väčší ako 60 stupňov. Zavoláme menší uhol a. Pretože pomer uhlov je 2: 1, druhý alebo väčší uhol je: 2 * a. A vieme, že súčet týchto dvoch uhlov je 90, takže môžeme písať: a + 2a = 90 (1 + 2) a = 90 3a = 90 (3a) / 3 = 90/3 a = 30
Súčet rozmerov vnútorných uhlov šesťuholníka je 720 °. Merania uhlov určitého šesťuholníka sú v pomere 4: 5: 5: 8: 9: 9, Aké sú miery týchto uhlov?
72 °, 90 °, 90 °, 144 °, 162 °, 162 ° Uvedené hodnoty sú vždy v najjednoduchšej forme. Nech x je HCF, ktorý bol použitý na zjednodušenie veľkosti každého uhla. 4x + 5x + 5x + 8x + 9x + 9x = 720 ° 40x = 720 ° x = 720/40 x = 18 Uhly sú: 72 °, 90 °, 90 °, 144 °, 162 °, 162 °