odpoveď:
Predpokladám, že na túto otázku sa pýtate priamka.
vysvetlenie:
Najprv vypracujte gradient nájdením
Potom pripojte pôvodné hodnoty pre jeden bod,
Z tohto dôvodu
Priama čiara L prechádza bodmi (0, 12) a (10, 4). Nájdite rovnicu priamky, ktorá je rovnobežná s L a prechádza bodom (5, -11).? Vyriešte bez grafického papiera a pomocou grafov-show spracovanie
"y = -4 / 5x-7>" rovnica priamky v "farbe (modrá)" sklon-zachytávacia forma "je. • farba (biela) (x) y = mx + b" kde m je svah a b y-záchyt "" na výpočet m použite "farba (modrá)" gradient vzorec "• farba (biela) (x) m = (y_2-y_1) / (x_2-x_1)" let "(x_1, y_1) = (0,12) "a" (x_2, y_2) = (10,4) rArrm = (4-12) / (10-0) = (- 8) / 10 = -4 / 5 rArr "riadok L má sklon "= -4 / 5 •" Paralelné čiary majú rovnú čiaru "rArr" rovnobežnú s čiarou L má tiež sklon "= -4 / 5 rArry
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (8, -3), (1,0)?
7x-3y + 1 = 0 Sklon priamky spájajúcej dva body (x_1, y_1) a (x_2, y_2) je daný (y_2-y_1) / (x_2-x_1) alebo (y_1-y_2) / (x_1-x_2) ) Keďže body sú (8, -3) a (1, 0), sklon čiary, ktorá ich spája, bude daný (0 - (- 3)) / (1-8) alebo (3) / (- 7) tj -3/7. Produkt sklonu dvoch kolmých čiar je vždy -1. Preto sklon priamky kolmej na ňu bude 7/3 a teda rovnica vo forme svahu môže byť zapísaná ako y = 7 / 3x + c Keď toto prechádza bodom (0, -1), pričom tieto hodnoty zadávame vyššie v rovnici, dostaneme -1 = 7/3 * 0 + c alebo c = 1 Preto požadovaná rovnica bude y =
Jeden riadok prechádza bodmi (2,1) a (5,7). Ďalšia čiara prechádza bodmi (-3,8) a (8,3). Sú čiary rovnobežné, kolmé alebo nie?
Ani paralelné ani kolmé Ak je gradient každej čiary rovnaký, sú paralelné. Ak je gradient negatívnej inverzie druhej, potom sú navzájom kolmé. To je: jeden je m "a druhý je" -1 / m Nech riadok 1 je L_1 Nech riadok 2 je L_2 Nech je gradient riadku 1 m_1 Nech je gradient riadku 2 m_2 "gradient" = ("Zmeniť y -axis ") / (" Zmena osi x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ......... (2) Gradienty nie sú rovnaké, takže nie sú paraleln