odpoveď:
graf {1 + sin (1 / 2x) -10, 10, -5, 5}
vysvetlenie:
Ako obdobie
S B bytia
Ako sa vám graf a zoznam amplitúda, perióda, fázový posun pre y = sin ((2pi) / 3 (x-1/2))?
Amplitúda: 1 Perioda: 3 Fázový posun: Frac {1} {2} Podrobnosti o grafe funkcie nájdete vo vysvetlení. graf {sin ((2pi / 3) (x-1/2)) [-2,766, 2,762, -1,382, 1,382]} Ako grafovať funkciu Krok 1: Nájdite nuly a extrémy funkcie pomocou riešenia x po nastavení výraz vo vnútri sínusového operátora (frac {2pi} {3} (x- frac {1} {2}) v tomto prípade na pi + k cdot pre nuly + 2k cd pi pre lokálne maximá a frac {3pi} {2} + 2k cd pre lokálne minimá. (Nastavíme k na rôzne celočíselné hodnoty, aby sme našli tieto grafické f
Ako môžem prepísať nasledujúce dva výrazy trig s exponentom nie väčším ako 1? Ako (A) (Sin ^ 3) x (B) (cos ^ 4) x?
Sin3x = 1/4 [3sinx-sin3x] a cos ^ 4 (x) = 1/8 [3 + 4cos2x + cos4x] rarrsin3x = 3sinx-4sin ^ 3x rarr4sin ^ 3x = 3sinx-sin3x rarrsin ^ 3x = 1/4 [1] 3sinx-sin3x] Tiež cos ^ 4 (x) = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 1/4 [1 + 2cos2x + cos ^ 2 (2x) ] = 1/8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x]
Ako zistíte body, kde má graf funkcie f (x) = sin2x + sin ^ 2x horizontálne tangenty?
Horizontálna dotyčnica neznamená ani zväčšovanie ani zmenšovanie. Konkrétne, derivácia funkcie musí byť nula f '(x) = 0. f (x) = sin (2x) + sin ^ 2x f '(x) = cos (2x) (2x)' + 2sinx * (sinx) 'f' (x) = 2cos (2x) + 2sxxxx sada f '( x) = 0 ° = 2cos (2x) + 2sxxxx2sinxcosx = -2cos (2x) sin (2x) = - 2cos (2x) sin (2x) / cos (2x) = - 2 tan (2x) = - 2 2x = arctan (2) x = (arctan (2)) / 2 x = 0,5536 Toto je jeden bod. Vzhľadom k tomu, že roztok bol vydaný opálením, ostatné body budú každý π násobok faktora v 2x význame 2π. Takže body b