odpoveď:
vysvetlenie:
Predpokladajme, že v rovnoramenný
tak
Samozrejme, máme,
uplatnenie Pythagorova veta, máme,
Dĺžka nohy pravouhlého pravouhlého trojuholníka je 5sqrt2 jednotiek. Aká je dĺžka prepony?
Hypotenuse = 10 Dostali ste dĺžku nohy na jednej strane, takže ste v podstate dostali obe dĺžky nôh, pretože rovnoramenný pravouhlý trojuholník má dve rovnaké dĺžky nôh: 5sqrt2 Aby ste našli hypotézu, musíte urobiť ^ 2 + b ^ 2 = c ^ 2 a = dĺžka nohy 1 b = dĺžka nohy 2 c = prepona (5sqrt2) ^ 2 + (5sqrt2) ^ 2 = c ^ 2 (25 * 2) + (25 * 2) = c ^ 2 50 + 50 = c ^ 2 100 = c ^ 2 sqrt100 = sqrt (c ^ 2) 10 = c prepona = 10
Dĺžka základne rovnoramenného trojuholníka je o 4 palce menšia ako dĺžka jednej z dvoch rovnakých strán trojuholníkov. Ak je obvod 32, aké sú dĺžky každej z troch strán trojuholníka?
Strany sú 8, 12 a 12. Môžeme začať vytvorením rovnice, ktorá môže reprezentovať informácie, ktoré máme. Vieme, že celkový obvod je 32 palcov. Každú stranu môžeme reprezentovať zátvorkami. Pretože poznáme iné 2 strany okrem základne sú rovnaké, môžeme to využiť v náš prospech. Naša rovnica vyzerá takto: (x-4) + (x) + (x) = 32. Môžeme to povedať, pretože základňa je o 4 menej ako ostatné dve strany, x. Keď túto rovnicu vyriešime, dostaneme x = 12. Ak to pripojíme pre každú stranu, dostaneme 8, 12
Pomer jednej strany trojuholníka ABC k zodpovedajúcej strane podobného trojuholníkového DEF je 3: 5. Ak je obvod trojuholníka DEF 48 palcov, aký je obvod trojuholníka ABC?
"Obvod" trojuholníka ABC = 28.8 Keďže trojuholník ABC ~ trojuholník DEF potom ak ("strana" ABC) / ("zodpovedajúca strana" DEF) = 3/5 farby (biela) ("XXX") rArr ("obvod "ABC) / (" obvod "DEF) = 3/5 a pretože" obvod "DEF = 48 máme farbu (biela) (" XXX ") (" obvod "ABC) / 48 = 3/5 rArrcolor ( biela) ("XXX") "obvod" ABC = (3xx48) /5=144/5=28.8